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Abstract

Intuitively, the Feature Selection problem is to choose a subset of a given a set of features

that best represents the whole in a particular aspect, preserving the original semantics of the

variables on the given samples and classes. In practice, the objective of finding such a subset

is often to reveal a particular characteristic present in the given samples.

In 2004, a new feature selection approach was proposed. It was based on a combinatorial

optimization problem called (α, β)-k-Feature Set Problem. The main advantage of using this

approach over ranking methods is that the features are evaluated as groups, instead of only

considering their individual performance.

The main drawback of this approach is the complexity of the combinatorial problems

involved. Since some of them are NP-Complete, it is unlikely that there would exist an efficient

method to solve them to optimality efficiently. To the best of the author’s knowledge at the

moment of this research, the available tools to deal with the (α, β)-k-Feature Set Problem

approach can not solve problems of the magnitude required by many practical applications.

Given the big advantage brought by the multivariate characteristic of this method, its

successful wide applicability and knowing that its only real known drawback is scalability,

further research to overcome such a difficulty is appropriate. Even though the optimal solution

of the problem is always desirable, it often is not strictly necessary in the case of many

biological applications. Therefore, this work aims to propose fast heuristics to address the

(α, β)-k-Feature Set Problem approach, and propose procedures to obtain dual bounds that

do not rely on external optimization packages.
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Chapter 1

Introduction

According to Luscombe et al. (2001), “Bioinformatics is conceptualizing biology in terms of

macromolecules (in the sense of physical-chemistry) and then applying ‘informatics’ techniques

(derived from disciplines such as applied maths, computer science, and statistics) to understand

and organize the information associated with these molecules, on a large-scale”. Further, they

also state that the aims of bioinformatics are three-fold: (1) to organize data, (2) develop tools

to analyse it and (3) use these tools to analyse it and interpret the results in a biologically

meaningful manner.

These aims have become particularly clear and important with recent advances in technol-

ogy. New tools like microarray chips allow experiments to be performed in a massively parallel

fashion, which generates huge amounts of data that have to be stored and analysed. That

creates the need for huge and efficient databases to store all this information, and efficient and

scalable tools to process and analyse such a great amount of data.

Furthermore, because of the relatively high cost of microarrays and the scarcity of suitable

tissue1, the data provided by such methods is generally highly underdetermined, in the sense

that one typically has many more variables than cases. That means that there may be many

solutions that explain the same tableau. Kohane et al. (2002) illustrated that well, providing

the following analogy: “To solve a linear equation of one variable (e.g., 4x = 5) we only need

one equation to find the value of the variable. To solve a linear equation of two variables

1See Kohane et al. (2002), chapter 2 for a discussion of which tissues are appropriate for particular experi-
ments.
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(e.g., y = 4x + b), two equations are required. If we have tens of thousands of variables, but

only hundreds of equations, then there will be thousands of potentially valid solutions. This is

the essence of what constitutes an underdetermined system”. For these systems, biostatistical

methods do not work well (see Kohane et al., 2002, Chapter 1.2.2), so novel techniques are

necessary.

For a brief introduction on Bioinformatics, refer to Cohen (2004); Karp (2002); Luscombe

et al. (2001). For further information, refer to Baldi and Brunak (2001); Bergeron (2002); Ko-

hane et al. (2002); Lesk (2002). For a more recent review and discussion about new challenges

in bioinformatics, in particular genome-wide association study challenges that will require

computational methods, see Moore et al. (2010).

1.1 Bioinformatics and Learning Algorithms

One of the most important problems in Bioinformatics is to distinguish between existing classes

based on characteristics (features) of samples. For example, observing expression patterns one

can distinguish between healthy and diseased samples.

To perform this task automatically, Learning Algorithms, as studied by Machine Learning,

are used. According to Hall (1999), “Machine learning is the study of algorithms that auto-

matically improve their performance with experience. An algorithm that – when presented with

data that exemplifies a task – improves its ability to predict key elements of the task can be

said to have learned.”

Supervised learning algorithms, or classifiers, attempt to create class descriptions from

a training set of samples, labelled with class information, that will enable an independent

(unlabelled) set of samples to be correctly identified. The Weka package (see Witten and

Frank, 2005) implements several classifiers, among other tools. Many of these classifiers were

used to address bioinformatics problems, like the early prediction of Alzheimer’s Disease (see

Gómez Ravetti and Moscato, 2008; Rocha de Paula et al., 2011) and Prostate Cancer Gómez

Ravetti et al. (2009). Yamanishi et al. (2004) proposed a method to infer protein networks from

multiple types of genomic data, casting the problem as a supervised learning problem. Tan
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and Gilbert (2003) surveyed 16 supervised learning methods on different biological datasets,

and provided some suggested issues when choosing an algorithm to address a dataset and

comparing its effectiveness to other’s.

Unsupervised learning algorithms, or clustering algorithms, on the other hand, attempt to

decide which samples should be clustered together, inferring the classes itself, without the need

of a labelled training set. González-Barrios and Quiroz (2003) proposed one such algorithm,

based on the comparison between the Minimum Spanning Tree and the k Nearest Neighbours.

Inostroza-Ponta (2008) compared MSTkNN, an algorithm inspired by it, to other methods

found on the literature. He also uses this method to address genome-wide analysis of datasets

in melanoma and prostate cancer, among other applications.

Inostroza-Ponta et al. (2011) dealt with the problem using a two level approach based

on the Quadratic Assignment Problem. Tasoulis et al. (2006) used an extension of the k-

windows clustering algorithm on a leukaemia microarray dataset. Abeel et al. (2008) used

self-organizing maps to distinguish between the structural profiles of promoter sequences and

other genomic sequences. Boutros and Okey (2005) discussed the biological motivations and

applications of unsupervised pattern recognition to integrate gene expression data with other

biological information, such as functional annotation, promoter data and proteomic data.

For further information on Data Mining and Machine Learning, refer to Witten and Frank

(2005) and Baldi and Brunak (2001).

1.2 Bioinformatics and Optimization

Many problems that arise in bioinformatics can be cast as optimization problems and solved

using well-known computer science techniques.

An optimization problem is the matter of finding at least one of the best solutions - as

there might be more than one optimal solution - from all feasible ones. This is particularly

interesting in scenarios where the associated systems are highly underdetermined (see Kohane

et al., 2002). These systems have many solutions that can explain it, but one is often interested

in at least one of the best.
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An important aspect of such problems is that many of them are classified as Non-deterministic

Polynomial-time Complete (NP-Complete), which are the optimization problems that are

at least as hard as the hardest Non-deterministic Polynomial-time (NP) problems. Formally,

they satisfy two properties: (1) they belong to the Non-deterministic Polynomial-time (NP)

class, and (2) are Non-deterministic Polynomial-time Hard (NP-Hard). The NP class com-

prises all decision problems (“yes” or “no”) where the correctness of a “yes” answer can be

verified in polynomial time on the size of the instance. A problem is NP-Hard if it is “at least

as hard as the hardest problems in NP”, or in other words, if instances of every problem in NP

can be cast as its instances. There are no known efficient algorithms - in the sense that they

run in polynomial time - that can solve problems in this class, and it is widely suspected that

they do not exist, although it has never been proven. In fact, if one such algorithm is found,

it can be used to solve all other problems in this class. That makes the study of this class

of algorithms one of the greatest existing challenges in computer science. Refer to Cormen

(2001); Garey and Johnson (1979) for more information on this topic.

One observation, however, motivates the use of exact algorithms to solve NP-Complete

problems: there exists several hard problems that (most likely) require exponential run time

when complexity is measured in terms of the input size only, but are computable in polynomial

time in the input size and in exponential time in a parameter k. That means that if k is

fixed at a small value, these problems are still tractable in practice, in the sense that real

world instances can be solved to optimality, even though they are traditionally considered as

intractable. The parameterized complexity theory, introduced by Downey and Fellows (1999),

studied such problems and proposes the following fixed-parameter hierarchy, in increasing order

of difficulty: Fixed-Parameter Tractable (FPT), W[1], W[2] and W[P]. For more information

on Parameterized Complexity see Downey and Fellows (1999); Flum and Grohe (2006).

Moreover, although there are no know polynomial algorithms to solve these problems to

optimality, many of them are still able to solve relatively small, but interesting, practical in-

stances within reasonable time. Many authors exploit that, and other interesting mathematical

properties to deal with important combinatorial problems that arise in bioinformatics. Brinza

and Zelikovsky (2008); Brinza et al. (2006), for example, develop several combinatorial search
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methods to address the problem of Multi Single Nucleotide Polymorphisms (SNP) Disease

Association, which is NP-Hard. Wang et al. (2008), in turn, developed an algorithm to find

near optimal solutions for a Non-Unique Oligonucleotide Microarray Probe Selection Problem,

which is also NP-Hard. Refer to Lancia (2008) for a survey on mathematical programming for

computational biology.

That brings an important matter into consideration: the modelling. The first papers on

computational biology, the field that “preceded” bioinformatics2, were very theoretical and

often included models of biological problems with proofs of its NP-Hardness. However, they

were simple abstractions of the real problems, that many times relied on mathematical proper-

ties that made them simpler to work with. Thus, the obtained solutions were often infeasible

or suboptimal in practice (see Lancia, 2008). Also, subjective aspects for consideration, like

what makes a biomarker or gene more interesting than the other for a particular purpose,

often makes it difficult to model biological problems because they cannot be mathematically

characterized properly.

Therefore, obtaining the optimal solution, proving the optimality of a solution, or even

estimating the quality of a given solution is not always critical or applicable, as the criteria of

evaluation itself is not well defined or is a crude simplification of the real world applications.

That means that, even if a so called optimal solution is obtained, it is difficult to state that

it is the best solution that one can find for its designated purpose. In these cases, where a

good solution would suffice as long as it is obtained within reasonable time, Approximative

Algorithms and Heuristics are very interesting choices. Unlike Heuristics, which usually only

find (hopefully) good solutions quickly, without any optimality or quality guarantees, Ap-

proximative Algorithms find solutions with provable performance worst case quality bounds

and provable run time bounds. Please refer to Gonzalez (2007) for more information about

Approximation Algorithms and Metaheuristics.

Finally, one last resource that can be used to work with large instances, is to parallelize the

algorithms used to solve it. That is, distribute tasks that can be performed simultaneously

2The term “preceded” here is used in a very loose sense: only because it used to be used before the word
“bioinformatics” became popular. There are still arguments about the distinction of the fields of bioinformatics

and computational biology (see Cohen, 2004).
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among many available processors, in such a way that it takes less time to finish. Parallel

algorithms have been widely used in optimization to deal with the curse of dimensionality of the

inherent problems. Even though it does not “solve” the issue, it often makes it possible to solve

many practical instances of difficult problems within reasonable time. Since Bioinformatics is

a very practical topic, in which one is often more interested in if an instance in particular is

solvable within reasonable time than in whether the problem is tractable, the parallelization

of tools is often a very interesting alternative.

1.3 Feature Selection

Intuitively, the Feature Selection problem is: given a set of candidate features, to choose a

subset of them that best represents the whole in a particular aspect, preserving the original

semantics of the variables on the given samples and classes. This definition shall be revisited

formally later on in this text. Very often in practice, the objective of finding such a subset is

to reveal a particular characteristic present in the given samples.

There are several reasons to perform feature selection. Among the most important are the

reduction of the dimensionality of the dataset and elimination of irrelevant, redundant, or con-

troversial features. These criteria are interesting because they ease the analysis, visualization

and interpretation of high-dimensional datasets.

The size reduction is particularly important for many modern datasets, such as genomic

ones (see Kohane et al., 2002, Chapter 4.5), because its analysis and interpretation can often be

very resource-demanding. See Inostroza-Ponta (2008) for an example where the visualization

problem is cast as a Quadratic Assignment Problem, which is intractable for large instances.

Also, the interpretation of data often includes an inspection step, which often is not fully

automatic, and is significantly easier when less variables are considered. Clark et al. (2012);

Inostroza-Ponta (2008); Inostroza-Ponta et al. (2011) exemplify the visualization matter well,

with several examples.

The elimination of irrelevant features is also very interesting for highly underdetermined

datasets. The idea is that this procedure makes the system under consideration less under-
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determined. Intuitively, that means that there is a good chance that many variables do not

contain useful information, contain incomplete information (e.g.: that may be relevant but not

representative in the considered samples) or contain inconvenient information (e.g.: unrelated

information that may mask or confuse the identification of a pursued characteristic in the

considered samples).

From the classification point of view, not only it is possible that a good selection of features

leads to a better accuracy when predicting classes but it is often the case that irrelevant training

information adversely affects machine learning algorithms. For example, Gómez Ravetti and

Moscato (2008); Gómez Ravetti et al. (2009), employed the (α, β)-k-Feature Set approach (see

Chapter 3) to select features and propose novel biomarkers for the prediction of Alzheimer’s

Disease and Prostate Cancer, respectively. These biomarkers are shown to be superior to

others found in the literature from the classification point of view, since they lead to a better

accuracy when predicting classes using classifiers. As argued by Hall (1999), one of the reasons

why that often works, is that noisy data with irrelevant and inconvenient features, such as that

of microarray experiments, make decision making more difficult for the classifiers. Indeed, this

behaviour was observed in several cases, such as decision trees (Langley and Sage, 1994) and

bayesian classifiers (Langley and Sage, 1995). Aha (1992); Aha et al. (1991); Langley and Sage

(1997) propose new methods to deal with that. The discussion of such matters and methods

is, however, not in the scope of this text.

Generally speaking, and according to Hall (1999), “many learning algorithms can be viewed

as making a (biased) estimate of the probability of the class label given a set of features. This

is a complex, high dimensional distribution. Unfortunately, induction is often performed on

limited data. This makes estimating the many probabilistic parameters difficult. In order to

avoid overfitting the training data, many algorithms employ the Occam’s Razor (Gamberger

and Lavrac, 1997) bias to build a simple model that still achieves some acceptable level of

performance on the training data. This bias often leads an algorithm to prefer a small number

of predictive attributes over a large number of features that, if used in the proper combination,

are fully predictive of the class label. If there is too much irrelevant and redundant information

present or the data is noisy and unreliable, then learning during the training phase is more
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difficult.”

1.4 Research Questions

In face of the new challenges imposed by highly underdetermined and high dimensional data,

the problem of feature selection should be revisited.

Considering the fact that undetermined systems have many associated solutions that may

have to be evaluated, and that this problem becomes even worse when the dataset is large,

the first research question that arises is:

“Is it possible to quickly select features on highly dimensional datasets, without compromising

the robustness of the solution?”

Further, assuming that such a method can be found, in order to prove its usefulness, it

would also be interesting to show that it indeed proposes a good compromise between speed

and quality of solutions. Thus, another very important research question also takes place:

“Is it possible to quickly estimate how good these solutions would be?”

In this thesis, answers to the both these research questions are sought by developing com-

binatorial methods to address the feature selection problem and estimate the quality of the

proposed solutions.

1.5 Structure of This Thesis

After the introductory notes given in this chapter, Chapter 2 surveys and contextualises the

existing feature selection methods. Even though this chapter aims to be a brief survey on

modern feature selection approaches, it does not include specific method-related literature. To

ease the reading of this text, these are provided on the beginning of each Chapter or Section,

where they are more relevant. The particular method chosen to be studied and extended is

then formally stated and detailed in Chapter 3.

Chapter 4 discusses the instances of interest, and defines the testbed that will be used

throughout this text.
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Next, Chapter 5 discusses, details and proposes efficient methods to obtain feasible solu-

tions for such problems. Such methods include greedy heuristics (Section 5.2), local search pro-

cedures (Section 5.3) and metaheuristic approaches that combine these methods (Section 5.4).

Section 8.1 summarizes the conclusions obtained after analysing the results depicted on Sec-

tion 7.1.

Chapter 6 discusses the quality of such solutions and proposes new methods to obtain

these quality estimates. These methods include simpler and faster procedures, as detailed

on Section 6.1; and more elaborated and expensive methods, as detailed on Section 6.2 and

Section 6.3. Each procedure is tested on Section 7.2 and the conclusions summarized on

Section 8.2.

Finally, Section 8.3 concludes this text summarizing the key conclusions made on Chapter 4,

Chapter 5 and Chapter 6.
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Chapter 2

Existing Feature Selection Approaches

In this chapter, the most important and recent works on feature selection are briefly discussed

as pertinent to the thesis aims and discussion. According to Hall (1999), the feature selection

algorithms found in the literature, in the context of classification, can be organized in two

categories: Filter and Wrapper algorithms. While the former includes algorithms that use

only general characteristic of the data to evaluate the worth of the features (or set of features),

the latter uses a learning algorithm that will ultimately be applied to the data to evaluate the

worth of the features. In other words, Filter algorithms tackle the Feature Selection problem

independently of the classification step, and Wrapper algorithms uses one classifier to evaluate

the importance of every feature or feature set tested (e.g.: in terms of accuracy). Thus, as

a general rule, Filter algorithms tend to be faster, simpler and independent of the choice of

classifier. However, considering the same choice of classifier to be used both on the feature set

selected by a filter algorithm and to be used within a wrapper method, the accuracy of the

latter tends to be better. Yvan Saeys and Larrañaga (2007) also introduced a third category,

Embedded algorithms, which merge feature selection and classification in one algorithm in

the sense that the feature selector actually interacts with the classifier (one uses the others’

information to perform its task). Algorithms in this category are often still not as fast as Filter

algorithms, but faster than Wrappers. Yvan Saeys and Larrañaga (2007) also distinguished

between two subcategories of Filter algorithms: Univariate and Multivariate. The former,

also known as ranking methods, are the fastest and simplest ones and do not model feature
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dependencies, that is, each feature is evaluated (ranked) individually, and the highest ranked

features are selected. The latter, in turn, model feature dependency and are more complex, but

differ from Wrapper and Embedded algorithms in the sense that they are still independent of

the classifier. Further, they also differentiates the Univariate Filter algorithms in Parametric,

in which a distribution of the samples is assumed to ease the ranking, and Model-Free, in

which no distribution is assumed.

2.1 Wrapper Methods

Wrapper methods use the classifier data to guide its search, in attempt to obtain more accurate

classification results.

Due to the inherent complexity of the resulting problems and size of the applications’

instances, most works that deal with microarray data use heuristic searches, of which the

evolutionary algorithms are the most popular. In particular, Duval and Hao (2009); Duval

et al. (2009) used a Memetic Algorithm (Moscato, 1989; Moscato and Cotta, 2003; Moscato

et al., 2004; Neri et al., 2012) that uses information from a Support Vector Machine (SVM) to

select genes for the molecular classification of cancer. More specifically, their fitness function

and crossover operator are based on the rankings generated the SVM, and every solution in

their population is refined with an Iterated Local Search procedure (Lourenço et al., 2003).

Umpai and Aitken (2005) developed a Genetic Algorithm (GA) (Davis et al., 1991) that uses

the K Nearest Neighbours (kNN) to evaluate solutions. Li et al. (2001) also used a similar GA

that employs the kNN classifier’s ranking to evaluate solutions, and perform crossover as well,

but focuses on the determination of convenient parameters to achieve a desirable sensitivity

instead of relying on a local-search. Ooi and Tan (2003) used a similar GA to select features,

but employs the Maximum Likelihood classifier to evaluate solutions instead of the kNN.

A few authors, however, still used sequential search approaches. Inza et al. (2004) employed

search procedure called Sequential Forward Search (Chan et al., 1999) using the IB1, NB, C4.5

and CN2 classifiers to evaluate the solutions. They also compare their method with a filter

variation for Leukemia and Colon Cancer datasets. Xiong et al. (2001) also used a SFS
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algorithm, and a variation, called Sequential Forward Floating Search ((Chan et al., 1999)).

To evaluate the solutions, both algorithms use either Fisher’s Linear Discriminator Analysis

(LDA), Logistic Regression or SVM classifiers.

Blanco et al. (2004), in turn, developed Estimation of Distribution algorithms that use the

Naive Bayes classifier to evaluate feature sets to select features for cancer classification. These

algorithms resemble GAs but instead of building populations using “genetic” principles, they

are build by sampling from an estimated probabilistic distribution.

2.2 Embedded Methods

Some of the Embedded methods found on the literature exploit the inherent ability of the

classifiers to discard features, like that of Random Forest, to infer a subset of discriminative

features. Díaz-Uriarte and Andrés (2006) iteratively fit random forests, at each iteration

building a new forest after discarding the least important genes. Jiang et al. (2004) developed

an algorithm that follows the same concept and compare it to a variation that uses Fisher’s

LDA instead of Random Forests.

Other authors use the rankings of univariate methods as weights to guide their search.

Guyon et al. (2002), for example, used SVM rankings to guide a search method based on

Recursive Feature Elimination. Ma and Huang (2005) used Logistic Regression weights to

allow a Receiver Operator Characteristic (ROC) technique to be used for large scale genomic

data.

2.3 Filter Methods

Unlike wrapper and embedded methods, filter methods only general characteristic of the data

to evaluate the worth of the features (or set of features).

2.3.1 Univariate Methods

Univariate filter methods rank features individually, by assigning a value to each. The simplest

of them, the Threshold Number of Misclassifications (TNoM), detailed in Ben-Dor et al. (2000),
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included setting a threshold on the observed fold-change differences within the features between

the states under study, and the detection of the threshold point in each gene that minimizes the

number of training sample misclassification. In other words, algorithms based on the TNoM

basically rank all the features and decide what is the minimum associated worth necessary for

a feature to be selected.

2.3.1.1 Univariate Parametric Methods

Jafari and Azuaje (2006) proposed two parametric variations of the TNoM, the sample t-test

and ANOVA, that gave birth to Bayesian Frameworks that adapt the t-tests and statistical

parameters to deal with the small number of samples, such as those proposed by Baldi and

Long (2001); Fox and Dimmic (2006). Although the Gaussian models are the most popular,

Thomas et al. (2001) and Newton et al. (2001) proposed the use of regression and Gamma

models, respectively.

2.3.1.2 Univariate Model-Free Methods

When no distribution assumption can be made, authors often use more general approaches,

such as the Wilcoxon Rank Sum, proposed by Thomas et al. (2001), BSS/WSS, proposed by

Dudoit et al. (2003) and Rank Products, proposed by Breitling et al. (2004). Another popu-

lar and successful approach uses random permutations to estimate the reference distribution

assumed by parametric approaches, leading to model-free alternatives. The works of Efron

et al. (2001); Goss Tuscher et al. (2001); Pan (2003); Park et al. (2001) are good examples of

such algorithms.

2.3.2 Multivariate Methods

Multivariate methods take filter methods a step further by considering groups of features

instead of individual features. Therefore, these methods basically define a multivariate fitness

function (a fitness function that assign a value to a certain group of features) and decide

which combinations of features to evaluate, the fitness function being their main differential.

Often as many combinations of features as possible are considered for evaluation, but due to
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the curse of dimensionality, many methods choose to restrict or fix the sizes of the groups of

features.

The simplest multivariate approaches, like that introduced by Bo and Jonassen (2002),

exploit only bivariate interactions while others exploit more complex, higher order, ones such

as Correlation based Feature Selection, proposed by Hall (1999) and later used by Wang et al.

(2005); Yeoh et al. (2002), and variants of the Markov Blanket Filter like those proposed

by Gevaert et al. (2006); Mamitsuka (2006); Xing et al. (2001). More complex correlations

are also exploited in methods like the Minimum-Redundancy Maximum-Relevance (MRMR),

proposed by Ding and Peng (2005), and Yeung and Bumgarner (2003)’s Uncorrelated Shrunken

Centroid (USC). Finally, the (α, β)-k-Feature Set problem has also been successfully used in

several practical applications to select features with different approaches (see Chapter 3). It

can be seen as a natural step forward from Ben-Dor et al. (2000), making it fully multivariate

by analysing groups of thresholds, instead of only individual ones. The fact that it is fully

multivariate, and the ability to control the desired robustness of the solution and number of

features to be selected make methods based on this problem particularly promising. However,

the exponential characteristic of algorithms involved to solve it limited the applications so far.

This work investigates ways to overcome this limitation using heuristics.

2.4 Further Reading

Even though the most relevant works for this studies have been described in this chapter,

there are other methods that were sometimes too focused on specific applications, or that

relied on assumptions that did not hold for the target problems. For a survey and comparison

of feature selection methods more focused on ranking, which include most older and popular

methods, refer to Molina et al. (2002). For a survey on feature selection methods focused

on classification, refer to Dash and Liu (1997). Their paper details several greedy feature

selection procedures, many of them also included in Molina et al. (2002). They also present

an earlier attempt of categorization of feature selection algorithms. For a more recent review

and categorization of feature selection methods, focused in bioinformatics, refer to Yvan Saeys
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and Larrañaga (2007) and this chapter.
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Chapter 3

The (α, β)-k-Feature Set Problem

Approach

In 2004, Cotta et al. (2004) proposed a feature selection approach based in combinatorial

optimization. The proposed problem, called (α, β)-k-Feature Set Problem, is a generalization

of the k-Feature Set Problem, which is proven NP-Hard (see Cotta et al., 2004; Davies and

Russell, 1994) and W[2]-Hard (see Cotta and Moscato, 2003a). Thus it is also NP-Hard and

W[2]-Hard.

Optimization approaches that rely on NP-Complete problems with instances that can

be solved within reasonable time in practice have been successfully used before to solve several

problems, and have been shown to be of great importance. Cotta and Moscato (2003b), for

example, proposed a hierarchical clustering method based on the Minimum Weight Hamil-

tonian Path Problem. Since this problem is NP-Hard, and exact methods were not able to

solve practical instances, they addressed it using a Memetic Algorithm. Busygin et al. (2005),

used Integer Programming to deal with the feature selection problem for biclustering pur-

poses. Umpai and Aitken (2005) also solved an optimization problem to deal with the feature

selection problem, focused on classification, but using a heuristic approach. Rizzi et al. (2010)

proposed a hierarchical clustering algorithm based on the arithmetic-harmonic cut. The prob-

lem of finding such a cut is NP-Hard, but fixed parameter tractable. Therefore, they proposed

a Memetic Algorithm to address it. Mellor et al. (2010) proposed an approach to find multi-
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drug therapeutic combinations based on a more general version of the Hitting Set Problem.

This problem is also NP-Hard but fixed-parameter tractable, which allowed them to solve

practical instances for low values of the parameters defined, using safe reduction procedures.

This chapter formalises the underlying problems and details how one of the possible ap-

proaches that are based on them determines the required parameters. A summary of all

notation used throughout this thesis is found in Appendix A

3.1 The Problem Formulation

The (α, β)-k-Feature Set Problem attempts to determine if there exists a set of k features that

explain the dichotomy within the samples, maximizing the similarities between samples of the

same class and the differences between the samples of different classes. A typical instance of

this problem, with m samples and n features consists of a discrete valued matrix M and an

array C. The m×n matrix M holds associated values mp,f of each sample p for each feature f .

The array C of size m holds the class cp of each sample p. The problem is defined with three

positive integer parameters α and β and k. The value of α represents the minimum number

of features that must explain the differences between any pair of samples of different classes.

The value of β represents the minimum number of features that must explain the similarities

between any pair of samples of the same class. Finally, as already mentioned, k represents the

number of features to be selected.

Notice that the required data for this problem must be discrete and the values found on

many datasets on the literature are often real numbers. For this purpose, Fayyad and Irani

(1993)’s algorithm (see Appendix B) can used to discretize the information.

3.1.1 The Graph Representation

To formulate the problem mathematically it is convenient to represent this problem as a graph.

In fact, since it is possible to reduce the k-Feature Set Problem to the Red-Blue Dominating

Set Problem (see Cotta et al., 2004), the (α, β)-k-Feature Set Problem can also be thought as

a problem in graphs in the same way, generalizing the problem.
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Consider a bipartite graph G = (U ,F , E) where the set of vertices F = {f1, .., fn} contains

one vertex for each feature and the set of vertices U contains one vertex up,q for each pair of

samples p and q, p 6= q, such that U can be partitioned in two disjoint subsets A and B: if

cp 6= cq, then up,q ∈ A and up,q ∈ B otherwise. In this graph, the set of all edges E contains

an edge e = (up,q, sf ) connecting vertices up,q ∈ U and sf ∈ F if up,q ∈ A and mp,f 6= mq,f or

if up,q ∈ B and mp,f = mq,f .

Figure 3.1 shows an example, extracted from Gómez Ravetti et al. (2009), of a (α, β)-k-

Feature Set Problem instance (3.1a) and its respective graph representation (3.1b).

Figure 3.2 formulates the (α, β)-k-Feature Set Problem as an Integer Program with binary

variables.

3.2 The Feature Selection Approach

In Figure 3.2, the (α, β)-k-Feature Set Problem is presented as Integer Program with binary

variables. Any feature set that satisfies constraints (3.2a)-(3.2c) is a feasible solution of the

(α, β)-k-Feature Set Problem. There are several methodologies to define the required argu-

ments. Rocha de Paula et al. (2011) set the required number of selected features based on

experience of previous works, that is, values that worked well on previous studies, such as Ray

et al. (2007) and Gómez Ravetti and Moscato (2008); and the rest of the parameters according

to the methodology that will be described in this section. Gómez Ravetti et al. (2009) use an

approach that attempts to favour the coverage of the nodes either on set A or B.

This work adopts the same methodology used in Berretta et al. (2008), where one attempts

to set α as big as possible, k as small as possible and β also as big as possible, in this order of

importance. This approach was designed to select a small number of features in the biological

context that best represents the whole set. More specifically, the rationale behind this approach

is to find a small subset of features that can be used to distinguish between two classes of

samples. The features could model proteins, genes or SNPs, for example. The samples could

be people who have a certain characteristic or not. Intuitively, in this case it is reasonable

to say that such a subset must hold as much information as possible about the differences
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3.2. THE FEATURE SELECTION APPROACH

Figure 3.1: An (α, β)-k-Feature Set Problem instance example, extracted from Gómez Ravetti
et al. (2009), and its graph representation.

(a) An instance example of the (α, β)-k-
Feature Set Problem.

Sample 1 2 3 4 5

F
e
a
tu

re

1 0 0 1 0 0
2 1 1 1 0 1
3 1 1 0 1 0
4 1 1 1 0 0
5 0 1 0 0 0
6 0 1 1 1 0
7 0 1 1 0 0

Class 1 1 2 2 2

(b) Graph representation of 3.1a. The dark gray
vertices are those in set A, the light gray vertices
are those in set B and the white vertices are those
in set F .
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3.2. THE FEATURE SELECTION APPROACH

Figure 3.2: Mathematical formulation of the (α, β)-k-Feature Set Problem. Note that all
input data must be defined beforehand. Different methodologies for that define different
feature selection approaches. One such approach, elaborated throughout this text, is detailed
on Section 3.2. Any feature set that satisfies these constraints is a feasible solution of the
problem.

∑

f∈F :∃e=(f,u)∈E

xf ≥ α ∀u ∈ A (3.2a)

∑

f∈F :∃e=(f,u)∈E

xf ≥ β ∀u ∈ B (3.2b)

∑

f∈F

xf = k (3.2c)

xf ∈ {0, 1}∀f ∈ F (3.2d)

Data:
α: the number of selected features that must cover every vertex in A.
β: the number of selected features that must cover every vertex in B.
k: the number of features that must be selected.

Decision Variables:
xf : 1 if feature f is selected, and 0 otherwise.

Constraints:
(3.2a): at least α selected features have to cover every vertex in A.
(3.2b): at least β selected features have to cover every vertex in B.
(3.2c): there must be exactly k selected features.

�
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3.2. THE FEATURE SELECTION APPROACH

between the samples, as that is the most useful and important information. However, it would

be interesting that such a subset is not to be considered too big, both because of technological

reasons related to the particular applications, such as the amount of proteins that would fit

in a microarray chip, for example; and to facilitate the interpretation of the results. Also, it

would be interesting that such a subset had good internal consistency, that is, it should have

as much evidence as possible that samples in the same group actually should be in the same

group. Finally, if there are more than one solution that satisfy all that, the most interesting

would be the one that holds more information. That naturally suggests the aforementioned

order of importance of the problem’s parameters, for which the four-stage approach depicted

on Figure 3.3 was proposed. In this methodology, the variables are set sequentially, by solving

a subproblem to define each parameter and fixing the obtained value before solving the next.

It is worth noticing that four optimization problems are solved, and the selected features

in each of them may vary significantly. However, only the feature set obtained on the last step

is used, as it is considered the most robust and useful in practice.

It is also important to notice that, with exception of the first (of determining α∗), all

optimization problems solved are potentially hard, and thus may take a long time to be solved

and require a significant amount of resources, depending on the instance. Indeed, since the

problem of finding k∗ is modelled as the unicost Min Set Multi Cover problem (see Section 3.3),

it is NP-Hard. The next two problems, of finding β∗ and the maximum cover, aim to find,

within optimal solutions of the Min Set Multi Cover, at least one with a maximal structure,

that is, that maximises also β and the total covering in that order of priority. Even though at

the moment we have no formal proof of difficulty (if it is NP-Complete), solving them could

be rather costly, as it would involve enumerating such solutions, and finding one such solution

is often hard enough.

It is also worth noticing that, while the first and second stages of the approach model

actual problem requirements: maximum distinction with minimal size, in order of importance.

The two last stages, however, model desirable characteristics to be found on the solutions, also

in order of importance.
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3.2. THE FEATURE SELECTION APPROACH

Figure 3.3: The four-stage approach used to determine the (α, β)-k-Feature Set Problem
parameters, α∗, β∗ and k∗.

1. Determine α∗, the maximum value of α such that there exists a feasible solution for the
(α, β) − k-Feature Set Problem. This value can be obtained in polynomial time either
by solving the model depicted on Figure 3.4 or by running Algorithm 1.

2. Determine k∗, the minimum number of features necessary to explain the dichotomy
between the classes, considering that at least α∗ features do so for each pair of samples.
This can be done by solving the problem depicted on Figure 3.5. In this model, α is set
to α∗, the value found on the previous step.

3. Determine β∗, the maximum value of β such that exactly k∗ features are selected to
explain the dichotomy between the classes and at least α∗ features do so for each pair of
samples. This can be done by solving the problem modelled on Figure 3.6, with α and
k set to α∗ and k∗, respectively, as obtained on the first two steps. This step maximizes
the internal consistency of the samples in the same class, providing an even more robust
feature selection.

4. Finally, find the k∗ features that provide more explanations in total, either to the di-
chotomy between the classes or similarity within samples in the same class, considering
the optimal parameters α∗, β∗ and k∗ for the (α, β) − k-Feature Set Problem depicted
on Figure 3.2. This is done by solving the optimization problem depicted by Figure 3.7,
setting the values of α, β and k to the ones obtained on the previous steps: α∗, β∗ and
k∗, respectively.

�

Algorithm 1: Polynomial algorithm to solve the Max α (α, β)-k-Feature Set Problem.
This problem can be trivially solved to optimality in polynomial time simply by counting
the degrees of each vertex in A. The optimum objective function value is the smallest
such degree because, if any bigger value was assumed, rows (3.4b) of Figure 3.4 relative
to nodes with a smaller degree would be infeasible. Similarly, if a smaller value was
assumed, a better solution would be easily found simply by incrementing this value,
which would not make any rows (3.4b) infeasible. This algorithm runs in O(|A|).

/* Let M be a sufficiently large number */

min ← M;1

foreach v ∈ A do2

if |N(v)| < min then min ← |N(v)|;3

return min4
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3.2. THE FEATURE SELECTION APPROACH

Figure 3.4: Mathematical formulation of the Max α (α, β)-k-Feature Set Problem. This
problem aims to find the biggest minimum covering requirement for the pairs of samples on
set A such that the resulting Set MultiCovering Problem solved on the next stage of the
(α, β) − k Feature Set Approach still has a feasible solution.

max α (3.4a)

∑

f∈F :∃e=(f,u)∈E

xf − α ≥ 0 ∀u ∈ A (3.4b)

xf ∈ {0, 1}∀f ∈ F (3.4c)

α ∈ Z+ (3.4d)

Decision Variables:
xf : 1 if feature f is selected, and 0 otherwise.
α: a positive integer value.

Objective Function and Constraints:
(3.4a): The objective is to maximise the value of α.
(3.4b): at least α selected features have to cover every vertex in A.

�
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3.2. THE FEATURE SELECTION APPROACH

Figure 3.5: Mathematical formulation of the Min k (α, β)-k-Feature Set Problem with β = 0.
This problem aims to find the minimum set of features that satisfy the covering requirements
of the sample pairs on set A. It is the Set MultiCovering Problem found on the literature,
with unitary costs and the same covering requirements for every row. Being a generalization
of the Set Covering Problem, this problem is also proven NP-Hard.

min
∑

f∈F

xf (3.5a)

∑

f∈F :∃e=(f,u)∈E

xf ≥ α ∀u ∈ A (3.5b)

xf ∈ {0, 1}∀f ∈ F (3.5c)

Data:
α: the minimum number of selected features that must cover every vertex in A . The
maximum setting for this is obtained by solving the model shown on Figure 3.4.

Decision Variables:
xf : 1 if feature f is selected, and 0 otherwise.

Objective Function and Constraints:
(3.5a): The objective is to minimise the number of selected features.
(3.5b): at least α selected features have to cover every vertex in A.

�
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3.2. THE FEATURE SELECTION APPROACH

Figure 3.6: Mathematical formulation of the Max β (α, β)-k-Feature Set Problem. This prob-
lem aims to find the biggest minimum covering requirement for the sample pairs in set B such
that it is still possible to obtain a feature set of size k that covers the sample pairs in set A
at least α times. Note that, even though this problem is very similar to the one depicted on
Figure 3.4, row (3.6d) makes it significantly harder because A and its connected edges are
not a mirror of B and its connected edges. That means that one might still need more than
k features to satisfy rows (3.6b) and (3.6c) at the same time, which could make row (3.6d)
infeasible.

max β (3.6a)

∑

f∈F :∃e=(f,u)∈E

xf ≥ α ∀u ∈ A (3.6b)

∑

f∈F :∃e=(f,u)∈E

xf − β ≥ 0 ∀u ∈ B (3.6c)

∑

f∈F

xf = k (3.6d)

xf ∈ {0, 1}∀f ∈ F (3.6e)

β ∈ Z+ (3.6f)

Data:
α: the minimum number of selected features that must cover every vertex in A . The
maximum setting for this is obtained by solving the model shown on Figure 3.4.
k: the number of features that must be selected. The minimum setting for this, considering
the specified value of α, is obtained by solving the model shown on Figure 3.5.

Decision Variables:
xf : 1 if feature f is selected, and 0 otherwise.
β: a positive integer value.

Objective Function and Constraints:
(3.6a): The objective is to maximise the value of β.
(3.6b): at least α selected features have to cover every vertex in A.
(3.6c): at least β selected features have to cover every vertex in B.
(3.6d): there must be exactly k selected features.

�

26



3.2. THE FEATURE SELECTION APPROACH

Figure 3.7: Mathematical formulation of the Max Cover (α, β)-k-Feature Set Problem. This
problem aims to find the feature set that yield the biggest covering among the optimal solutions
of the previous stage of the (α, β) − k Feature Set approach. That is, it attempts to find
a solution that is optimal for all previous stages of the approach, that provides the best
explanation for the tableau under consideration.

max
∑

f∈F

wfxf (3.7a)

∑

f∈F :∃e=(f,u)∈E

xf ≥ α ∀u ∈ A (3.7b)

∑

f∈F :∃e=(f,u)∈E

xf ≥ β ∀u ∈ B (3.7c)

∑

f∈F

xf = k (3.7d)

xf ∈ {0, 1}∀f ∈ F (3.7e)

Data:
α: the minimum number of selected features that must cover every vertex in A . The
maximum setting for this is obtained by solving the model shown on Figure 3.4.
k: the number of features that must be selected. The minimum setting for this, considering
the specified value of α, is obtained by solving the model shown on Figure 3.5.
β: the minimum number of selected features that must cover every vertex in B . The maximal
setting for this, considering the specified values of α and k, is obtained by solving the model
shown on Figure 3.6.
wf : the importance (weight) of feature f . Throughout this work, wi is the degree of f ∈ F .

Decision Variables:
xf : 1 if feature f is selected, and 0 otherwise.

Objective Function and Constraints:
(3.7a): The objective is to maximise the covering of the pairs of samples.
(3.7b): at least α selected features have to cover every vertex in A.
(3.7c): at least β selected features have to cover every vertex in B.
(3.7d): there must be exactly k selected features.

�
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3.3. SET (MULTI) COVER PROBLEMS

3.3 Set (Multi) Cover Problems

The (α, β)-k-Feature Set problem belongs to a larger class of problems called Covering Prob-

lems, of which the most prominent examples are the Set Cover Problems. Indeed, only row

(3.2c) on Figure 3.2 is not a covering constraint.

In these problems, there is a set of elements, called universe, and a set of subsets of these

elements such that the union of all the subsets of elements is the universe. A covering is

a subset of all available subsets of elements, whose union still contains the whole universe.

The Minimum Set Cover is the minimum number of subsets necessary to compose a covering.

The Minimum Set Cover Problem is NP-Hard (Garey and Johnson, 1979), and one of Karp

(1972)’s 21 NP-Complete problems.

Consider a vector c ∈ Z+ and a binary matrix A. The Set Cover Problem can be formulated

as the integer program defined in (3.8).

min{z = cx : Ax ≥ 1,x ∈ {0, 1}} (3.8)

Figure 3.8 illustrates the problem with an example. In the representation shown in

Figure 3.8a, a feasible covering requires that every element of the universe (the numbers)

have to be in at least one of the selected boxes (the available subsets). In Figure 3.8b, every

edge represents entry in A where the value is one. The dark nodes represent the selected

subsets, and a full edge represent a specific element of the universe being covered by a specific

subset. Any feasible covering would thus require every element of the universe to be connected

by at least one full edge.

A generalization of this problem, the Set Multi Cover Problem, introduces redundancy, by

allowing the covering requirement of the elements of the universe to be greater than one. Let

b ∈ Z+ be a vector containing how many times each element must be covered. The Set Multi

Cover Problem can be formulated as the integer program defined in (3.9). In this problem,

every element i of the universe would be required to be connected by at least bi ≥ 1 full edges
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3.3. SET (MULTI) COVER PROBLEMS

Figure 3.8: Example of a Min Set Cover. Given a universe U = {1..12} and the set of
available subsets F = {a = {1, 2}, b = {5, 6}, c = {9, 10}, d = {1, 2, 5, 9, 10}, e = {2, 8}, f =
{6, 7, 10, 11}, g = {3, 4, 7, 8, 11, 12}}, a minimum set cover (of size 3) would be achieved by
subsets C = {b, d, g}.

(a) Set Representation

1 2 3 4

5 6 7 8

9 10 11 12

1 2 3 4

5 6 7 8

9 10 11 12

Input: Universe and a set of subsets Output: minimum size (3) cover

(b) Graph Representation: the darkest nodes rep-
resent the minimum size (3) cover. The full edges
illustrate a minimum set cover.
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3.3. SET (MULTI) COVER PROBLEMS

in Figure 3.8b, and at least bi boxes in Figure 3.8a.

min{z = cx : Ax ≥ b,x ∈ {0, 1}} (3.9)

It is easy to see that the Min k (α, β)−k-Feature Set problem, as formulated in Figure 3.5,

is modelled as a Set Multi Cover Problem, setting c = 1 and b = α. The features can

be modelled as the available subsets of the elements of the universe which, in turn, can be

modelled as the pairs of samples.

Since the problem depicted on Figure 3.4 is always solved to optimality, obtaining a good

solution for the one formulated on Figure 3.5 is the most important step of the (α, β)-k-Feature

Set approach. The next two problems, depicted by Figure 3.6 and Figure 3.7 only seek an

optimal solution of the one depicted on Figure 3.5 with optimal structure: maximal beta and

maximal cover.

Even though the Set Multi Cover problem only models the second stage of the (α, β)− k-

Feature Set approach, it can be very resourceful to gain insight into new solution methods

for the whole procedure. To the best knowledge of the author at the time of this research,

the only published approach to this problem is the exact approach proposed by Cotta et al.

(2004). Therefore this section reviews some of the most important approaches found on the

literature for the Set Cover and Multi Cover Problems.

Notice, however, that since the (α, β)− k-Feature Set approach requires an optimal struc-

ture on the optimal solution, the complete approach could be - and often is - significantly

harder in practice than either Set Cover or Multi Cover alone. Also, since the last two stages

consider also a second, potentially large, set of elements in its universe, the full problems under

consideration are also much larger than the Set Multi Cover (sub)problem solved at the second

stage of the approach. Therefore, even though sample problem sizes and running times for

Set (Multi) Cover problems are reported in this section, whenever available, these are merely

to give the reader a better idea of the limitations of state-or-the art methods that could be

adapted for the objectives pursued in this work, as these measurements are not comparable

to those of any (α, β) − k-Feature Set approach algorithms.
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3.3.1 Existing Set Cover Approaches

One of the first methods in the field is the greedy algorithm proposed by Chvatal (1979)

which, at each iteration, simply selects the subset that maximizes the ratio between its degree

and its weight. This algorithm gives an approximation ratio of log(n), n being the number of

features. It is interesting to notice that Lund and Yannakakis (1994) showed that the Set Cover

Problem cannot be approximated by polynomial algorithms within a ratio of log(n/4) under

assumptions that are considered stronger than that P 6= NP (see Feige, 1998). Therefore, it

is reasonable to say that it is unlikely that Chvatal’s approximation ratio can be significantly

improved using a greedy algorithm.

In attempt to overcome this difficulty, a non-deterministic version of Chvatal’s algorithm

was then developed by Feo and Resende (1989). In this setting, instead of deterministically

choosing the subsets, it restricts the choice to a subset of interesting unselected features and

chooses randomly between them. Also, since it has a random component, and thus different

results can be obtained from different runs, it is ran several times and the best solution is

considered.

Hassin and Levin (2006) developed a version of Chvatal’s greedy algorithm that is able

to regret its decisions. In this modified version, the algorithm is allowed to withdraw a some

selected subsets from the solution, provided that the newly selected ones cover all the items

that were covered by the withdrawn. Using this restricted backtracking strategy they were

able to obtain a better approximation ratio than that of the original algorithm.

A natural extension of greedy and probabilistic algorithms, is the use of meta-heuristics.

Lan et al. (2007) developed a procedure that uses a modified version of Chvatal’s greedy heuris-

tic, and a local search procedure within a Meta-RaPS framework. The improving heuristic

randomly removes a few subsets from a solution, which makes it infeasible for not covering

all the elements, and then solves the reduced size problem composed of only the uncovered

elements to make it feasible again. The resulting method was able to obtain near-optimal

solutions for problems with up to 1000 elements and 10.000 subsets within reasonable time.

Jacobs and Brusco (1994) proposed a Simulated Annealing-based heuristic for the problem

that was also able to solve up to 1000 elements and 10.000 subsets.
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Another meta-heuristic attempt to address the problem was made by Beasley and Chu

(1996), with a Genetic Algorithm. This algorithm was also able to obtain near optimal solu-

tions for instances with up to 1000 elements and 10000 subsets within reasonable time. Solar

et al. (2002) proposed a parallel version of a similar algorithm that allowed several searches

of the solution space to occur simultaneously. This algorithm was able to obtain near optimal

solutions for instances with up to 500 elements and 5000 subsets within reasonable time.

For more information about meta-heuristics, please refer to Glover and Kochenberger

(2003).

Lovasz (1975) showed that the ratio of optimal integral and fractional covers of a hyper-

graph does not exceed 1 + log d, where d is the maximum degree. Therefore, the integrality

gap of the linear relaxation of the integer programming formulation of the Set Cover Problem

is of O(log n), which is the approximation rate of the Chvatal (1979)’s algorithm.

Bertsimas and Vohra (1998) and Kolliopoulos and Young (2005) proposed algorithms that

used both linear and non-linear functions to round the fractional coefficients of solutions

obtained by solving the linear relaxation of the problem. Their focus was on theoretical

results, and practical computational results were not listed.

Following the same paradigm of cutting planes and subgradient optimization once proposed

by Balas and Ho (1980), Beasley (1990a) proposed a Lagrangean heuristic which, combined

with other enhancements of the method proposed by Beasley (1987) (see Beasley and Jørnsten,

1992), culminated in an exact approach able to solve to optimality instances with up to 400

elements and 4000 subsets. The Lagrangean heuristic, in particular was also able to obtain near

optimal solutions, better than those obtained by a number of other heuristics, for instances

with up to 1000 elements and 10000 subsets. Balas and Carrera (1996) proposed a similar

exact approach, using a Branch-and-Bound framework. Lorena et al. (1994) used a similar

heuristic approach, using a Surrogate relaxation of the problem, which is able to solve instances

also with up to 1000 elements and 12.000 subsets within reasonable time.

Ceria et al. (1998) and Caprara et al. (1999) also proposed Lagrangean heuristics able

to solve instances with up to 4000 elements and 1.000.000 subsets. The latter seemed to

outperform or match the former, Beasley’s, Balas and Carrera and Lorena et al.’s algorithms.
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Caserta (2007) used a Tabu Search procedure as a center piece for a hyper heuristic con-

sisted of a Primal-Dual subgradient optimization based on Ceria et al. (1998)’s approach.

Significantly more complex, their procedure benefited from the introduced random compo-

nents to slightly improve some of the gaps and bounds for the largest railway crew scheduling

instances, and matched the results on the others.

Even though not all cited papers provide time measurements, throughout this text, a

“reasonable computational time” is considered to be of the order of seconds or minutes for

easy instances up to a couple of hours (up to 5000 seconds) for the hardest ones.

3.3.2 Existing Set Multi Cover Approaches

Less works on the literature deal with the Set Multi Cover Problem, and they are mostly

generalizations of Set Cover algorithms.

One of the first approaches, proposed by Hall and Hochbaum (1986), uses an approximative

algorithm to address the problem. Their algorithm also provides a dual feasible solution that

is used to show that the ratio between the optimum and the solution obtained in the worst

case does not exceed the maximum row sum of the coefficient matrix A of Equation 3.9.

Generalizing and extending the ideas of Balas and Ho (1980); Beasley (1990a); Ceria et al.

(1998), Rajagopalan and Vazirani (1998) followed the classic primal dual scheme to propose

parallel Primal-dual RNC approximation algorithms for (Multi) Set (Multi) Cover Problems.

Berman et al. (2007) proposed a randomized approximative algorithm for the problem, de-

riving estimates for the approximation ratio as the covering requirement varies, and improving

the standard greedy algorithm’s ratio of O(log n).

To the best knowledge of the author, up to the time of this research, the fastest approach

to solve the Set Multi Cover problem (to optimatility) is the one proposed by Hua et al.

(2009, 2010). Their algorithms are able to solve the Set Multi Cover problem in O((b + 2)n)

time using dynamic programming, where b is the maximum coverage requirement and n is the

number of elements in the universe.

Finally, Pessoa et al. (2010, 2011) used the ideas of Balas and Ho (1980); Beasley (1990a);

Ceria et al. (1998) within a GRASP (Feo and Resende, 1995) framework, obtaining a better
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tradeoff between solution quality and running times, specially for large instances.

3.4 Safe Reduction Rules

Since the (α, β)-k-Feature Set Problem is NP-Complete (see Cotta and Moscato, 2003a; Davies

and Russell, 1994), large instances quickly become an issue.

Data reduction is a key technique in the study of fixed parameter algorithms. For many

intractable problems, reducing the instance to a problem kernel in the parameterized setting

(see (Downey and Fellows, 1999, see)) can make it possible to be solved within reasonable time

in practice. That is done by pre-processing the instance in a way that the data size is reduced

and any solution of the problem kernel is necessarily also a solution of the original problem.

When such method is used in a way that no optimal solution is lost, this is referred as a safe

reduction.

Balas and Carrera (1996); Balas and Ho (1980); Beasley and Jørnsten (1992); Beasley

(1987, 1990a) proposed many safe reduction rules for the Set Cover Problems, and in general

they are crucial for the success of their, and others’ like Caprara et al. (1999); Ceria et al.

(1998); Lorena et al. (1994), approaches for large problems. Many commercial mathematical

programming packages like CPLEX1 and GUROBI2 are also usually very good with redun-

dancy and dominance tests, which comprise many of the proposed safe reductions. Therefore,

even simply using one of these tools to solve the Integer Programming models could provide

very useful results.

Berretta et al. (2007); Cotta and Moscato (2003b); Moscato et al. (2005) extended some

of the Set Cover safe reduction rules for the (α, β)-k-Feature Set Problem. These procedures,

first proposed in Cotta et al. (2004), are detailed on Algorithm 2, Algorithm 3, Algorithm 4,

Algorithm 5.

Let N(u) be the set of neighbours of vertex u ∈ U : N(u) = s ∈ F : ∃(u, s) ∈ E . Similarly,

let N(s) be the set of neighbours of vertex s ∈ F : N(s) = u ∈ U : ∃(u, s) ∈ E . Let du be an

integer associated with vertex u ∈ U , initially set to the number of features that still have to

1http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
2http://www.gurobi.com/
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cover vertex u: α if u ∈ A and β if u ∈ B.

Algorithm 2: (α, β)-k-Feature Set Problem Instance Reduction Rule 1: if a vertex u
needs to be covered by at least du features, and it has only du neighbours, then all its
neighbours must be in the solution, otherwise it will always be infeasible for not fully
covering it.

foreach u ∈ U : du = |N(v)| do1

foreach s ∈ N(s) do2

add s to solution;3

G← G\{u};4

Algorithm 3: (α, β)-k-Feature Set Problem Instance Reduction Rule 2: if a vertex
needs no more covering, it no longer needs to be considered when choosing a feature to
be selected.

foreach u ∈ U : du ≤ 0 do1

G← G\{u};2

Algorithm 4: (α, β)-k-Feature Set Problem Instance Reduction Rule 3: if there are two
vertices, one whose neighbourhood is a subset of the other’s, and the one with the smaller
set of neighbours has a larger current covering requirement than the other, then there is
no need to consider the one with the larger set of neighbours, because sufficient features
to cover it have to be selected to cover the one with the smaller set of neighbours.

foreach u, v ∈ U , u 6= v : du ≥ rv and N(u) ⊆ N(v) do1

G← G\{v};2

3.5 Conclusions

Despite the NP-Completeness of the problem, this approach has been used to solve many

practical instances within reasonable time. For example, Cotta et al. (2004) used this approach

to select a subset of genes, in a dataset with different types of diffuse large B-cell lymphoma,

that differentiate between two classes. In Moscato et al. (2005), this approach was used to

predict the U.S. Presidency election results. Berretta et al. (2007) used it to select features

on a dataset with different types of cancer (NCI60). Gómez Ravetti and Moscato (2008);

Gómez Ravetti et al. (2009) used it to find biomarkers for Alzheimer’s Disease and Prostate

Cancer, respectively. Berretta et al. (2008) also used this approach to select features on an
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Algorithm 5: (α, β)-k-Feature Set Problem Instance Reduction Rule 4: if there are
two features, one whose set of neighbourhood is a subset of the other’s, and for every
neighbour of the one with the smaller set of neighbours it is not necessary to choose both
to fully cover it, then it is not necessary to consider the feature with the smaller set of
neighbours, because the other one already does everything it does, and possibly more.

foreach f, g ∈ F : N(f) ⊂ N(g) where ∀u ∈ N(f) with |N(u)| ≥ du do1

G← G \ {f};2

Alzheimer’s disease dataset. Mendes et al. (2008) also used this method to identify molecular

portraits for prostate tumours with different Gleason patterns. Rosso et al. (2009) employed

the approach to select background brain electrical activity features that distinguish childhood

absence epilepsy patients from controls. To uncover a network of transcription factors that

potentially dysregulate several genes in Multiple Sclerosis, at least one of its disease subtypes,

Riveros et al. (2010) used an approach that included both the Hitting Set and (α, β)k-Feature

Set problems. Both these problems are NP-Hard, but the exact approaches available in the

literature were able to solve their instances.

The main advantage of using this optimization based approach over ranking methods is that

the features are evaluated as groups, instead of only considering their individual performance.

That is particularly interesting in highly underdetermined systems, in which there are many

solutions that explain a single scenario. It is often the case that two or more features are highly

ranked but do not explain a scenario well together, either because they do not introduce new

information to one another, or because they explain different and/or conflicting aspects of

the scenario, for example. In such a situation, a set of features that hold complementary

information might be much more useful, better characterising the tableau.

The main drawback of this approach is the complexity of the combinatorial problems in-

volved. Since some of them are NP-Complete, it is unlikely that there exists an efficient

method to solve them to optimality efficiently (in polynomial time). Even though the appli-

cations found on the literature are important and could be dealt with within reasonable time,

that is not often the case, specially considering new datasets that have been emerging, such

as the ones for genome wide association studies or interpretation of large microarray datasets,

for example. Those may contain up to the order of millions of features and tens of thousands
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of samples. To the best of the author’s knowledge, at the moment of this research, the avail-

able tools to solve the (α, β)-k-Feature Set Problem approach can not solve problems of this

magnitude.

Recent works, such as Rocha de Paula et al. (2011) and Arefin et al. (2011) for example,

exploited feature combinations. That is, the set of features F is expanded in a similar manner

as the universe U is created for case/control datasets (see Section 3.1.1). For each possible

combination of two features, a “metafeature” is included. In these works, the considered values

of every sample are defined as the difference between the original values. Arefin et al. (2011)

used this methodology to create metafeatures on the Breast Cancer dataset found in Van

De Vijver et al. (2002). In Rocha de Paula et al. (2011), we used this technique to model

cell signalling imbalance in blood plasma by introducing a new metafeature for each possible

difference of values in the original dataset. With the study of these metafeatures, it was

possible to show that a specific pattern of cell signalling imbalance in blood plasma has valuable

information to distinguish between non-diseased controls and samples with Alzheimer’s disease.

In both these works the dataset is enlarged with the introduction of a number of new features

of the order of the number of features squared, which is a significant amount, considering that

the methodology could be applied to a dataset with tens of thousands of features.

Given the big advantage brought by the multivariate characteristic of this method, its

successful wide applicability and knowing that its only real known drawback is scalability,

further research to overcome such a difficulty is appropriate. As discussed on Section 1.2,

even though the optimal solution of the problem is always desirable, it often is not strictly

necessary, as it is the case of various biological tableaus, for which all solutions still need

further verification, analysis, interpretation and research. Therefore, this work aims to propose

efficient heuristic tools to address the (α, β)-k-Feature Set Problem approach, providing good

solutions quickly, even for larger, more realistic, datasets.
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Chapter 4

The Target Instances

Due to its very practical nature, in the field of bioinformatics one is often interested in instances

that model the most important tableaus to be processed or interpreted, as those are going to

be found more often in practice. For the same reason, algorithms that perform best for such

instances can be more interesting than the others. To design and benchmark such algorithms,

one has to understand the aspects that characterise these target instances and know why they

are important.

Also, it is important to bear in mind that large instances are not necessarily difficult in

practice. If good solutions (and hopefully also the optimal solution) can be obtained through

an efficient procedure on the instance, it can be regarded as easily solvable, even though high

dimensional (i.e.: time or resource consuming). A large instance poses a different challenge,

of resource availability and management, that is, storing and retrieving data from memory

efficiently. Throughout this text, difficult instances are those which have inherent properties

that make the choices needed to solve it harder in comparison to instances of the same size

that lack such characteristics. Note also that this chapter distinguishes between instances

of the same problem. More specifically, it is already proven under very strong assumptions

(P=NP) that it is unlikely that there would exist an efficient algorithm to solve every instance

of the (α, β) − k-Feature Set problem to optimality. It could be the case, however, that the

some methods work better (i.e.: have lower computation time and/or memory requirements)

for specific classes of instances than the others.
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Table 4.1: Exact results for real world instances. Every stage of the (α, β)-k-Feature Set
approach was allowed one hour to run. Each line represents one real world instance, as
detailed on Section 4.1. Each column shows the instance’s objective function value (OF) and
computational time in seconds (CT) for each of the stages of the (α, β)-k-Feature Set approach.
Whenever the obtained solution is not optimal the optimality gap is presented in parenthesis.

Max α Min k Max β Max Cover
Instance OF CT (s) OF CT(s) OF CT(s) OF CT(s)

DS 14 0.001 36 0.004 10 0.009 2016 0.005
ADMF 86 0.067 292 1.388 118 7.561 581608 4.446
PD1 4094 0.073 8675 1.786 3677 910.743 24935478 266.252
PD2 154 0.004 289 0.039 76 0.648 53196 0.222
PC 409 0.021 867 0.295 231 3051.378 7540529 40.122
SM 22 23.771 128 2073.598 34 (547.06% ) 3600

This chapter aims to detail and discuss the expected characteristics of the target instances,

and attempts to propose suitable benchmark instances to be used throughout the research,

defining degrees of difficulty that would help to highlight the advantages of the methods under

consideration.

4.1 Real Case/Control Testbed

Real world instances come in many different sizes and with various characteristics. As men-

tioned before, many times the exact approach is able to solve the instance to optimality within

reasonable time and sometimes it does not. Also, what is a reasonable time also depends on

the application. If one needs to solve the same instance many times, or many variations of it,

a computational time that could be considered reasonable but high may become impractical.

In this work, a pool of six real world instances is considered. They were selected to be

reasonably different from each other, with respect to their inherent characteristics and size.

The original datasets were discretized with the entropy filter proposed by Fayyad and Irani

(1992, 1993) and ambiguous features were discarded.

Table 4.1 shows the running times for each of these instances. They were allowed one hour

of computation time for each of the stages of the (α, β)-k-Feature Set approach. Each stage

used the best values found for the previous ones within that time.

The resulting instances are referenced as follows:
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DS is the dataset proposed by Lockstone et al. (2007). It contains 73 features, which are

genes, and 15 samples with seven cases of Down Syndrome and eight controls. This instance

is interesting for being small and easy (as the exact approach is able to solve it quickly),

while characterizing biological instances well, as it has more features than samples. It should

therefore be a good standard for an easy instance, in the sense used throughout this work:

computational effort required to solve.

ADMF is the dataset used by Rocha de Paula et al. (2011), which was obtained by expand-

ing the dataset proposed by Ray et al. (2007) with one new “metafeature” for each possible

pairwise combination of features. This resulting dataset contains 683 features (and metafea-

tures), which are (pairs of) proteins, and 83 samples with 43 cases of Alzheimer’s Disease

and 40 controls. This instance was selected due the methodology used to create it: since

pairwise combinations of features are used, this instance is expected to be very symmetrical.

In other words, groups of metafeatures that share a feature have similar characteristics (i.e.:

node degrees). Even though significantly bigger than DS, it is also relatively easy to solve, but

required observable running times. Moreover, tt is interesting to notice the particular method-

ology that Rocha de Paula et al. (2011) applied on it, which required that many variations of

this instance were solved. In this case, it would be very important that these instances are

solved quickly.

PD1 is the dataset used by Scherzer et al. (2007). It contains 17099 features, which are

genes, and 105 samples with 50 cases of Parkinsons’s Disease and 55 controls. PD2 is the

dataset used by Lesnick et al. (2007). It contains 1674 features, which are Single Nucleotide

Polymorphisms (SNPs), and 25 samples with 16 cases of Parkinsons’s Disease and 9 controls.

These two instances were selected for being associated with the same pathology but with very

different characteristics. While PD2 can be solved quickly, PD1 is more challenging, with more

appreciable running times, probably mainly due to its size.

PC is the dataset used by Chandran et al. (2007). It contains 3556 features, which are

genes, and 171 samples with 90 cases of Prostate Cancer and 81 controls. This instance was

chosen due to its intermediate size.

SM is the dataset used by Charlesworth et al. (2010). It contains 525 features and 1219
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samples with 922 individuals who smoke and 297 who do not. This dataset was chosen for

differing from typical biological datasets, having more samples than features. Even though it

is not the biggest under consideration, it is the most demanding: the exact approach can only

solve the first two stages of the (α, β)-k-Feature Set Approach. The maximisation of β can

not be solved to optimality, and consequently the solutions for the maximisation of the Total

Covering may not be realistic due to the suboptimality of the value of β used.

4.2 (α, β)-k-Feature Set Problem Instances

Most of the instances used to benchmark the algorithms cited on the previous chapter belong

to the OR-Library (Beasley, 1990b). They differ from each other with respect to their size

mainly. At the time of this research, this set of available instances was composed of 87 files:

50 from Beasley (1987) and Balas and Ho (1980), 20 from Beasley (1990a), 10 from Grossman

and Wool (1997) and 7 from Ceria et al. (1998). The last ones were the largest ones available,

with 1000000 columns and 5000 rows.

Observing the graph representation of (α, β)-k-Feature Set Problem instances, it is easy

to see its tight relationship with Set Multi Cover instances. They differ from each other

mainly due to the fact that the (α, β)-k-Feature Set approach partitions the elements of the

universe in two correlated groups that are considered differently throughout the methodology.

In particular, if the partition of the elements of the universe is taken as a parameter, the

set of possible (α, β)-k-Feature Set problem instances are a subset of possible Set Multi Cover

instances. That is because of structural properties that will be detailed throughout this section,

related to the way the graph representation is obtained.

Namely, the instances under consideration are obtained using the method depicted in

Section 3.1.1. Therefore, two important things should be noted.

First, |U| is of the order of the number of available samples of the datasets squared (O(m2),

or more precisely
(

m
2

)

). Therefore, for a sufficiently large number of samples, the instance could

have |U| ≫ |F|. That differs from most instances available in the literature for Set Multi

Cover Problems, which have the opposite case. This could have a considerable impact on the
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obtained bounds and solution process by methods derived from integer programming (Caserta,

2007).

Next, the set of all pairs of samples is composed by two correlated disjoint sets A and

B of available pairs of samples that belong to the different or the same class, respectively.

That comes from the fact that both the existence or not of the nodes in sets A ∪ B must

be consistent with the classes that the samples are assigned in the dataset. Similarly, the

existence of edges must be consistent with the values in matrix M of the original dataset and

the classes of the samples involved. In other words, although any table with features and

samples can be translated into a tripartite graph that will serve as an instance to the (α, β)-

k-Feature Set problem, not every tripartite graph can be translated into a table with features

and samples. Therefore, although every biological case-control instance can be converted into

a Set Multi Cover Problem instance, by considering the features as sets in F and pairs of

samples the elements in U ; not every Set Multi Cover Problem instance can be converted into

an (α, β)-k-Feature Set Problem instance even defining appropriate partitions of the universe

U .

In particular, for every combination of three samples, there are also three possible com-

binations of pairs of samples. Without loss of generality, consider three samples o, p and q

and their resulting pairwise combinations, visited in lexicographic order, uo,p, uo,q and up,q.

Once the properties (i.e.: whether they belong to set A or B and whether they have an edge

connecting them to a feature sf ∈ F) of uo,p and uo,q are known, the properties of up,q would

have to be consistent with the properties of the previous two sample pairs. That is because,

since there are only two classes (cases and controls) and two possible values for the entries in

matrix M (different values or the same value), the set definitions (if the sample pair belongs

to A or B) for the first two pairs of samples already define classes for the three samples under

consideration, and thus define the set that the third sample pair belongs as well. If this third

sample pair was in another set, the graph would not be translatable to a table with features

and samples because a value in C would be ambiguous. Similarly, the presence or absence of

edges between the two first sample pairs and a given feature sf ∈ F already defines entries on

matrix M (i.e.: if they are different or not) for all three samples for the same feature sf ∈ F .
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In this case, if the presence or absence of an edge between the third pair of samples and a fea-

ture is not consistent with the presence/absence of edges between the other two sample pairs

and the same feature, and assuming that the set definitions are consistent with the sample

classes; the graph would not be translatable to a table with features and samples because a

value in M would be ambiguous. See Figure C.1 and Figure C.2 for illustrations correct and

of ambiguous cases, respectively.

For example, consider Figure C.1e. If uo,p ∈ A, then co and cp must hold different values

(say, 1 and 2, respectively) because A holds the sample pairs that involve samples that belong

to different classes. Next, if uo,q ∈ B, then cq = 1 because, from the previous assignment,

co = 1 and B holds sample pairs that involve samples that belong to the same class. Therefore,

up,q ∈ A because, from the two previous assignments, cp = 2 and cq = 1 and A holds the

sample pairs that involve samples that belong to different classes. Similarly, given these class

values, if there exists an edge (uo,p, sf ) ∈ E then, since uo,p ∈ A, the value of o in the value

matrix is different from the value p for feature sf ∈ F , say 0 and 1, respectively. Next, if there

is not an edge (uo,q, sf ) ∈ E , because uo,q ∈ B the value of q must be same as the value of o,

which is 0. Finally, since the values of p and q are both 1 for feature sf ∈ F and up,q ∈ A,

there must not exist and edge (up,q, sf ) ∈ E .

The main impact of these characteristics is on the distribution of nodes between A and

B, and the distribution of edges connecting U to F among the vertices in U . However, recent

works, such as Rocha de Paula et al. (2011) and Arefin et al. (2011), exploit feature combi-

nations. That is, the set of features F is expanded in a similar manner as the universe U

is created for case/control datasets (see Section 3.1.1): with the introduction of “artificial”

(meta)features, one for each combination of two or more features. Such a methodology also

impacts the size of set F and the distribution of edges connecting U to F among the vertices

in F in a similar manner.

These edge distributions, both of edges connected to U and F could have a significant im-

pact on how the available methods perform on the instance under consideration. For example,

the methodology we used in Rocha de Paula et al. (2011), which relies on a graph created using

the methodology detailed on Section 3.1.1 and also expands set F with meta-features, included

44



4.2. (α, β)-K-FEATURE SET PROBLEM INSTANCES

an iterative step consisted of the analysis of the consensus of the results of several classifiers

with the “incumbent” training set, followed by the filtering of samples on this training set,

leading to new incumbent training sets on each iterations. The classification step performed

on each iteration was always preceded by a feature selection stage, which was performed using

a (α, β)-k-Feature Set approach. Interestingly, the significant increase in instance size - from

only 120 features to 7260 in our case - was not the only complicating factor we encountered,

as the perturbed problems obtained after each iteration were often more computationally de-

manding than the original ones, even though they had less samples. Since both sets U and F

are perturbed, it is difficult to state which is responsible for the impact on the performance of

the algorithm. Also, changing the values of the parameters, α, β and/or k also had a signifi-

cant impact on the computational challenge imposed by the resulting problems, often making

them prohibitively demanding to be tackled in practice.

Another consequence of such a construction, regards centrality: very central features (in

other words, ranked important) will create a family of important metafeatures with similar

centralities, and consequently, highly symmetrical subproblems whose solutions include them.

A similar effect is observed in the way Set Cover instances are constructed from case/control

datasets using the methodology described on Section 3.1.1: very “important” samples create

highly symmetrical subproblems whose dual solutions include them. Therefore, it is reasonable

to expect that the structure of each of the three sets of vertices, A,B and F affect the difficulty

of the (α, β)-k-Feature Set Approach.

Finally, it is also important to notice that the first two stages of the methodology, β

is allowed to be zero with no penalty. Therefore, the nodes in B do not affect the objective

function and these stages consider only the set A ⊆ U . The last two stages of the methodology

reward work done on the sample pairs on the B side, and therefore consider the whole universe

U . The instances available on the literature do not partition the elements of the universe.

Therefore their characteristics target only what is equivalent to the first two stages of the

(α, β)-k-Feature Set approach, as the second partition would be empty. Since the focus of this

work is on the final outcome of the whole methodology rather than on the (partial) solution

of a specific step, that also suggests the need for a novel benchmark testbed that allows to
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study how changes in either partition affect the tractability of the instance.

4.3 The Practical Difficulty of Instances of Covering Problems

A typical Set Cover instance consists of a cost array with weights for each of the available

subsets, and a representation of the associated bipartite graph (see Section 3.3). As previously

mentioned, in the case of (α, β)-k-Feature Set problem instances, all subsets have the same

cost (i.e.: unitary costs).

To better understand one of the factors that can make a Set Cover instance difficult in

practice, consider the most successful approaches to tackle Set Cover problems found on the lit-

erature. They are often based on Lagrangian Relaxation, following the same scheme proposed

by Beasley (1990a), which dualizes constraints Ax ≥ 1 obtaining the Integer Program:

maxL(λ) (4.1)

where λ ∈ R+, and

L(λ) = min(c−A
T λ)x + 1λ (4.2)

As stated by Beasley (1990a); Ceria et al. (1998), for any given λ this problem is easily

solvable by inspecting the signs of the reduced costs. It is easy to see that any vector x that

minimizes the reduced costs has xj = 1 if (cj −
∑

i aijλj) < 0, xj = 0 if (cj −
∑

i aijλj) > 0

and xj ∈ {0, 1} if (cj −
∑

i aijλj) = 0. The key components of Beasley (1990a)’s approach

is to use reduced cost fixing and generate feasible solutions at every iteration. That is, for

a given λ, a x vector is defined by inspecting the signs of the reduced costs and branching

whenever they are null, case in which xj may either be zero or one. Note that, at any point

of this process, x is not necessarily a feasible solution of the Set Cover problem. Therefore,

more columns are set to 1 until it becomes feasible. The choice of which column is to be set

depends on a rank function, many of which are also proposed in the literature by the same

aforementioned authors.

For the unicost case, however, these ideas would not be very effective because, since the
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costs are all the same and unitary, most of the reduced cost signs would be negative, setting

most of the columns to one, which is equivalent to selecting most sets. That would lead

to a solution of very poor quality for the Set Cover problem, which could usually only be

improved by column redundancy checks. Similarly, if the costs are different, but reside in a

very restricted range, they would also all fall in the same case (either positive, negative or

null). If the reduced costs are positive in their majority, most of the columns would be set to

zero, leading to a solution that is highly infeasible for the Set Cover problem. The solution

quality would therefore be highly dependent on the column ranking algorithm or branching.

Ranking algorithms might provide poor solutions as the ranks would typically be very similar.

Branching, on the other hand, proves to be an impractical choice for large problems. Finally, if

most of the reduced costs are null, the algorithm would again rely too much on column ranking

and/or branching, as few columns would be fixed. Therefore it is reasonable to think that an

easy Set Cover instance would have a wider range of reduced costs, conveniently distributed

within (relatively few) positive and (many) negative values, and with few null values, in order

to obtain good bounds and rely little on branching.

Another important aspect of the instances that should be considered is row and column

correlation. If many columns or rows can be eliminated using safe reductions, the kernel

problem may be more tractable in practice. Note that this problem may still be difficult, but

its solution time and resource requirements would be thus comparable to problems of smaller

size.

That said, it also becomes clear why most of the algorithms in the literature have a

more poor performance for the unicost case (Ceria et al., 1998). It is also reasonable to

characterise difficult instances of the Set Cover Problem in terms of the constant terms of

the reduced costs. Two main components are constant and might contribute to the difficulty

of the instance: the column costs and distribution of “1s” in the value matrix. Disregarding

safe reductions, the instances would become harder as the column costs become more similar

and as the “1s” are more uniformly distributed on the value matrix. These conditions would

make the reduced costs provide poor information, and compromise the bounds used by the

algorithms. In other words, the state of art algorithms would find very symmetrical problems
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more difficult. Symmetry detection and breaking are still open problems and are widely studied

in the literature. See Margot (2010) for a brief review and examples in this topic. Commercial

packages, such as CPLEX and GUROBI, also have very effective ways of detecting and breaking

symmetries and thus can be very effective in solving Set Cover Problems. Another approach,

however involves exploiting the symmetry of the problem to speed up the search whenever

possible.

It is also worth mentioning that the second term of the reduced costs have a very interesting

interpretation on the graph representation: they formulate the node degrees and can be seen

as weights to the Lagrangian multipliers. That imposes the same difficulty on many of the few

local search improvement and greedy heuristics found on the literature, as they often use this

information to obtain initial solutions, restrict their candidate lists and guide their searches.

Finally, it is possible to show that, for the Set Cover Problem, the best bound obtained via

Lagrangian relaxation equals the one obtained via linear programming relaxation (Geoffrion,

1974; Umetani and Yagiura, 2007). The former approach has been preferred on the state-of-

the art approach for it allows for more efficient implementations, reducing the computational

effort that the later would require. Near optimal bounds were usually enough to obtain

optimal or very good results after solution polishing. The exact approaches based on Integer

Programming, in turn, are also heavily guided by the reduced costs and hence often show

the same behaviour, with a potential overhead introduced by solving the Linear Programming

relaxation of the model.

4.4 Random Instance Generation

It is important to notice that, even though the (α, β)-k-Feature Set Problem defines its in-

stances as tables with cases and controls, after it is translated to its graph representation

(using the methodology described in Section 3.1.1) the methods available on the literature

do not rely on any of the structural properties detailed on Section 4.2 to guide its solution

process. The mathematical formulation used to solve it, however, is strongly correlated to that

of Set Multi Cover Problems, and therefore would share also their weaknesses and difficulties,
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as discusses on Section 4.2. Since this thesis aims to address the performance and scalability

issues observed with this approach, ideally without changing its scope, the generation of Set

Multi Cover Problem instances is preferred. One of the reasons for that is because it greatly

increases the number of possible instances, providing a more interesting spectrum of instances

that can comprise characteristics that could compromise the performance of the tools found

on the literature to tackle the (α, β)-k-Feature Set Problem. It also significantly reduces the

complexity (and running times) of the generator, since it no longer has to guarantee that the

proposed graph can be reverted to a case/control table.

Therefore, the testbed used throughout this text considers a number of instances generated

using Algorithm 6, to generate Set Multi Cover instances with a given edge distribution on

sets A,B and F .

Algorithm 6: Instance Generator used to create the proposed testbed. The basic idea
is to insert edges between a vertex in F and either A or B until the desired edge density
is reached. The steps where a vertex is chosen at random defines how well distributed
the edges are among the vertices. In this work, “choose a random” follows the linear
distribution depicted on Figure 4.2, and takes the bias to the uniform distribution as a
parameter.

Input: Edge densities: densityAF and densityBF , sizes of the sets: |F|, |A|and|B|.
Output: A random tripartite graph with |F| nodes in F , |A| nodes in A and |B| nodes

in B; and approximate edge densities densityAF and densityBF from sets A
and B to F , respectivelly.

nedges← densityAF ∗ |F| ∗ |A|;1

while nedges > 0 do2

choose a random s ∈ F : |N(s)| < |A|;3

choose a random u ∈ A : ∄e = (u, s) ∈ E ;4

E ← E ∪ {(u, s)};5

nedges ← nedges-1 ;6

nedges← densityBF ∗ |F| ∗ |B|;7

while nedges > 0 do8

choose a random s ∈ F : |N(s)| < |B|;9

choose a random u ∈ B : ∄e = (u, s) ∈ E ;10

E ← E ∪ {(u, s)};11

nedges ← nedges-1 ;12

The main idea behind this method is to sequentially select nodes to connect with new

edges until a desired edge density is met. Note that, to ensure that the resulting graph is a

valid tripartite graph, one end of the edge must be a sample pair while the other must be
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a feature. To generate instances with more different characteristics, the argument that the

distribution of edges defines the instance’s characteristic found on Section 4.3 is exploited.

This is implemented by replacing the (standard) random number generator, which follows an

uniform distribution, for one that follows a linear distribution.

The reason the linear distribution is chosen is that it allows to define both a smooth or

abrupt bias. In other words, assuming any ordering of the candidate nodes, the first of any

two adjacent sample pairs may be only slightly less or much less probable to be chosen than

the other, depending on the defined parameter b ∈ [0, 1]. Figure 4.2 illustrates this point.

This random number generator is implemented using Algorithm 7. It generates numbers

in the [0, 1] interval following the continuous linear distribution depicted in Figure 4.2. A

discrete number, that represents a node to be connected with an edge, is easily obtained using

Algorithm 8. Using this random number generator, and assuming a 1→ 1 mapping of integers

to candidate nodes in A,B and F , it is possible to determine how much bigger the degree of

nodes mapped by higher integers are like to be with respect to the nodes mapped by lower

integers, simply by adjusting the parameter b.

Algorithm 7: Linear Random Number Generator. Generates a number in the [0, 1] in-
terval using the linear distribution depicted on Figure 4.2, using a standard random num-
ber generator rnd() that follows the uniform distribution. As defined by Equation 4.3,
parameter b ∈ [0, 1] defines how closely the probability function should approximate the
uniform distribution.

Input: b ∈ [0, 1]
Output: x ∈ [0, 1], chosen at random following the linear distribution depicted on

Figure 4.2.
rnd1 ← rnd();1

rnd2 ← rnd();2

if rnd1 > rnd2 + b then rnd1 ← rnd2;3

return rnd1;4

Algorithm 8: Algorithm to map integers in the interval [x, y) to continuous ranges in
[0, 1].

Input: A continuous value v ∈ [0, 1]
Output: An integer in [x, y)
return ⌊(x + (y − x + 1))v⌋1

To guarantee that there are no disconnected nodes, which could lead either to useless
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4.4. RANDOM INSTANCE GENERATION

Figure 4.2: Probability Density Function f(x, b) of the Linear Distribution on continuous
variables x and b ∈ [0, 1], as detailed on (4.3). The variable b controls the bias on the
linear distribution. As b tends to one, f(x, b) approximates the uniform distribution. The
probability P (v1 ≤ x ≤ v2) for the random variable to fall within a particular region is given
by the integral of this variable’s density over the region, that is, the defined integral of the
function for a specific interval x ∈ [v1, v2], as detailed by (4.4).
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features (if s ∈ F is disconnected) or an impossible instance (if u ∈ U is disconnected),

Algorithm 9 is applied. That is achieved without changing the edge density by disconnecting

the most dense valid (in the sense that it must be a sample pair if a feature is disconnected,

or a feature otherwise) start or end node and reconnecting it to the disconnected one. The

rationale behind this is to try to change the given biases as little as possible, by regretting

only a choice that would be very frequent, what would not be very significant statistically.

Algorithm 9: Instance Generator: fix disconnections. This algorithm aims to connect
any disconnected vertices without changing the edge densities, while minimising the
impact on the edge distribution. That is achieved by disconnecting an appropriate node
with very high degree and connecting the loose end to the disconnected node. The
rationale behind that is only to regret a choice that would be very frequent anyway.

Input: A tripartite graph G = (A ∪ B,F , E)that may have disconnected nodes.
Output: A tripartite graph with no disconnected nodes.
while ∃s ∈ F : |N(s)| = 0 do1

find s′ = max|N(s′)|{s′ ∈ F\{s}};2

find u = max|N(u)|{u ∈ N(s′)};3

E ← E\{(s′, u)};4

E ← E ∪ {(u, s)};5

/* Do the same for the vertices in A */

while ∃u ∈ A : |N(u)| = 0 do6

find u′ = max|N(u′)|{u′ ∈ A\{u}};7

find s = max|N(s)|{s ∈ N(u′)};8

E ← E\{(u′, s)};9

E ← E ∪ {(u, s)};10

/* Do the same for the vertices in B */

while ∃u ∈ B : |N(u)| = 0 do11

find u′ = max|N(u′)|{u′ ∈ B\{u}};12

find s = max|N(s)|{s ∈ N(u′)};13

E ← E\{(u′, s)};14

E ← E ∪ {(u, s)};15

4.5 The Proposed Testbed

In this work, instances with 2000 features and two disjoint sets of 20000 sample pairs (totalling

an universe of 40000) and an edge density of 20% are used. That would model the size of

a case of a case-control dataset with 2000 features and 200 samples. The resulting instances
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4.6. EXPERIMENTAL ANALYSIS

have 20000 pairs of samples in A and 20000 pairs of samples in B, for example.

All instances were generated with the method proposed on Section 4.4, but it is not enforced

that there exists a feasible case-control table of values that can be translated into it. Instead,

to obtain a wide spectrum of instance characteristics that would cover more weaknesses of the

existing approach, 125 classes of instances are defined, each one with three bias values on the

uniform distribution (see Figure 4.2) b in {0, 0.25, 0.5, 0.75, 1}, one to control the distribution

of neighbours of F , A and B respectively.

Note that two instances generated with the same random seed and same values of the bias

on the linear distribution for F and A would lead to the same instance of finding the maximum

α and minimum k, but are still different since the set B, necessary for finding the maximal β

and total covering are different. That is an important remark because, even if the first two

problems can be solved to optimality within reasonable time, the resulting problems solved by

at the last two problems, after the introduction of set B, might still be too demanding, not

finish within reasonable time and compromise the whole (α, β)-k-Feature Set approach.

Table Table 4.2 depicts the proposed instance generation parameters bF , bA and bB.

4.6 Experimental Analysis

In this section, all instances generated (see Section 4.5) are tackled by solving the models

proposed by Berretta et al. (2007, 2008) using CPLEX version 12.2. One hour of computation

time is allowed for each model, and the following stage, according to the methodology depicted

on Section 3.2, uses the best solution found so far as input.

The difficulty of the instance is analysed considering the obtained optimality gap and

running times.

Results on the first stage of the (α, β)-k-Feature Set Approach are omitted from this section

because it can be solved in polynomial time using very little memory, and do not pose a serious

challenge to the whole approach.

Throughout this thesis, the optimality gaps shown for the second and fourth stages of the

(α, β)-k-Feature Set approach (minimisation of the number of selected features and maximisa-
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Table 4.2: Proposed instances generation parameters. Each row represents one of the proposed instances. The first column associates
the instance to an index that will be used to identify it throughout the text. The next three columns detail the biases on the linear
distribution of edges incident to sets F ,A and B, respectively.

Instance bF bA bB Instance bF bA bB Instance bF bA bB Instance bF bA bB

1 0 0 0 33 0.25 0.25 0.5 65 0.5 0.5 1 97 0.75 1 0.25
2 0 0 0.25 34 0.25 0.25 0.75 66 0.5 0.75 0 98 0.75 1 0.5
3 0 0 0.5 35 0.25 0.25 1 67 0.5 0.75 0.25 99 0.75 1 0.75
4 0 0 0.75 36 0.25 0.5 0 68 0.5 0.75 0.5 100 0.75 1 1
5 0 0 1 37 0.25 0.5 0.25 69 0.5 0.75 0.75 101 1 0 0
6 0 0.25 0 38 0.25 0.5 0.5 70 0.5 0.75 1 102 1 0 0.25
7 0 0.25 0.25 39 0.25 0.5 0.75 71 0.5 1 0 103 1 0 0.5
8 0 0.25 0.5 40 0.25 0.5 1 72 0.5 1 0.25 104 1 0 0.75
9 0 0.25 0.75 41 0.25 0.75 0 73 0.5 1 0.5 105 1 0 1

10 0 0.25 1 42 0.25 0.75 0.25 74 0.5 1 0.75 106 1 0.25 0
11 0 0.5 0 43 0.25 0.75 0.5 75 0.5 1 1 107 1 0.25 0.25
12 0 0.5 0.25 44 0.25 0.75 0.75 76 0.75 0 0 108 1 0.25 0.5
13 0 0.5 0.5 45 0.25 0.75 1 77 0.75 0 0.25 109 1 0.25 0.75
14 0 0.5 0.75 46 0.25 1 0 78 0.75 0 0.5 110 1 0.25 1
15 0 0.5 1 47 0.25 1 0.25 79 0.75 0 0.75 111 1 0.5 0
16 0 0.75 0 48 0.25 1 0.5 80 0.75 0 1 112 1 0.5 0.25
17 0 0.75 0.25 49 0.25 1 0.75 81 0.75 0.25 0 113 1 0.5 0.5
18 0 0.75 0.5 50 0.25 1 1 82 0.75 0.25 0.25 114 1 0.5 0.75
19 0 0.75 0.75 51 0.5 0 0 83 0.75 0.25 0.5 115 1 0.5 1
20 0 0.75 1 52 0.5 0 0.25 84 0.75 0.25 0.75 116 1 0.75 0
21 0 1 0 53 0.5 0 0.5 85 0.75 0.25 1 117 1 0.75 0.25
22 0 1 0.25 54 0.5 0 0.75 86 0.75 0.5 0 118 1 0.75 0.5
23 0 1 0.5 55 0.5 0 1 87 0.75 0.5 0.25 119 1 0.75 0.75
24 0 1 0.75 56 0.5 0.25 0 88 0.75 0.5 0.5 120 1 0.75 1
25 0 1 1 57 0.5 0.25 0.25 89 0.75 0.5 0.75 121 1 1 0
26 0.25 0 0 58 0.5 0.25 0.5 90 0.75 0.5 1 122 1 1 0.25
27 0.25 0 0.25 59 0.5 0.25 0.75 91 0.75 0.75 0 123 1 1 0.5
28 0.25 0 0.5 60 0.5 0.25 1 92 0.75 0.75 0.25 124 1 1 0.75
29 0.25 0 0.75 61 0.5 0.5 0 93 0.75 0.75 0.5 125 1 1 1
30 0.25 0 1 62 0.5 0.5 0.25 94 0.75 0.75 0.75
31 0.25 0.25 0 63 0.5 0.5 0.5 95 0.75 0.75 1
32 0.25 0.25 0.25 64 0.5 0.5 0.75 96 0.75 1 0
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4.6. EXPERIMENTAL ANALYSIS

tion of the total covering, respectively) are calculated using Equation 4.5. For the third stage

(maximisation of β), however, preliminary results have shown that the optimal objective func-

tion value can often be zero, which would result in a division by zero on Equation 4.5 that is

addressed by adding a very small constant ǫ to the denominator. In these cases, the resulting

gap would be exceedingly large and not describe the situation well. Therefore, the optimality

gaps for this stage in particular are presented in non-percent form, and are calculated using

Equation 4.6.

|best primal bound− best dual bound|

ǫ + |best primal bound|
(4.5)

|best primal bound− best dual bound| (4.6)

Figure 4.3 shows the stacked running times of each stage of the exact approach to solve

the proposed instances.

It is immediately noticeable that, even though all instances have the same size, the running

time required to solve them vary significantly. Next, it is also easy to see that the running time

required to maximise α is insignificant with respect to the running times of the subsequent

stages.

Looking at the column sizes of individual stages at the same figure, it is possible to see

that with the exception of the columns associated to the maximisation of β, they are mostly

of about the same size, and capped at 3600 seconds. That means that most of the problems

reached the timeout limit.

In the case of the maximisation of β, most of the values seem to exceed the limit of 3600

seconds. That means that, not only these problems reached the timeout, but also often needed

significantly more time to finish work in progress. It also becomes evident that this is the most

demanding stage of the approach.

It is also possible to see that, excluding the maximisation of α, it is rarely the case that the

exact approach reaches timeout to solve one stage, but solves any of the next stages quickly.

Table 4.3 shows the average sizes of the kernel problems, after pre-processed by CPLEX’s
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4.6. EXPERIMENTAL ANALYSIS

Figure 4.3: Stacked the running times of each stage of the exact approach to solve the proposed
instances. Each column represents the stacked running times the stages of the (α, β)−k Feature
Set approach for each of the proposed instances. The instances are ordered in ascending order
of computational effort required. In Appendix D.1, Table D.1 detail these values and identify
the instances in the order they are shown.
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4.6. EXPERIMENTAL ANALYSIS

Figure 4.4: Optimality gaps, calculated with Equation 4.5, obtained with exact approach for
the minimisation of the number of selected features. The instances are ordered in ascending
order of optimality gaps, before the timeout of one hour. In Appendix D.1, Table D.2 detail
these values, identify the instances in the order they are shown and include also information
about the performance of safe reductions, running time, and size of the solution enumeration
tree.
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presolve, and average number of nodes. It is possible to see that the instances could not be

reduced much for the second stage of the approach, which is modelled as the unicost Set Multi

Cover problem. However, it could be reduced a more for the next two stages in average, which

still did not make the solution process finish within reasonable time. It is also interesting to

notice that the first and third stages of the approach explored significantly more nodes before

timeout.

Since the exact method could not solve most of the proposed instances within reasonable

time, it often obtained a non-zero optimality gap. Figure 4.4, Figure 4.5 and Figure 4.6 illus-

trate the obtained gaps for the minimisation of the number of selected features, maximisation

of β and maximisation of the total covering, respectivelly.

Once more it became evident that size is not the only factor that makes the instance

challenging as, even though all instances were of the same size, the obtained optimality gaps
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Table 4.3: Average CPLEX results for the last three stages of the (α, β) − k Feature Set approach, and their respective standard
deviations. The first column identifies the stage. The second and third columns show the sizes of sets F and U , respectively, after
performing safe reductions (CPLEX’s presolve). The next three columns show the optimality gap, calculated using Equation 4.5, the
running time to solve this stage and the number of nodes of the solution enumeration tree that CPLEX had to expand, respectively.

Stage Red. F ± Red U ± Gap ± Time ± Nodes ±

Min k 90.03% 21.20% 80.35% 39.59% 12.35% 13.89% 2902.90 1481.25 655.40 872.63
Max β 86.34% 28.06% 68.06% 38.45% 2.91 3.10 4939.38 6308.06 8.84 57.50

Max Cover 84.67% 29.19% 55.66% 39.27% 3.00% 2.99% 2580.31 1621.13 2648.19 3400.93
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4.6. EXPERIMENTAL ANALYSIS

Figure 4.5: Optimality gaps, calculated with Equation 4.6, obtained with exact approach
for the maximisation of β. The instances are ordered in ascending order of optimality gaps,
before the timeout of one hour. In Appendix D.1, Table D.3 detail these values, identify the
instances in the order they are shown and include also information about the performance of
safe reductions, running time, and size of the solution enumeration tree.
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4.6. EXPERIMENTAL ANALYSIS

Figure 4.6: Optimality gaps, calculated with Equation 4.5, obtained with exact approach
for the maximisation of the total covering. The instances are ordered in ascending order of
optimality gaps, before the timeout of one hour. In Appendix D.1, Table D.4 detail these
values, identify the instances in the order they are shown and include also information about
the performance of safe reductions, running time, and size of the solution enumeration tree.
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varied significantly.

Analysing Figure 4.4, it is possible to see that, the obtained gaps can be quite big, reaching

up to 80%. However, analysing Figure 4.3 and Figure 4.5, it is interesting to notice that, even

though the exact method puts a considerable effort in improving β, the difference between

the obtained solution and obtained upper bound does not exceed ten features. A similar

observation can be made for the percent differences for maximisation of the total covering by

analysing Figure 4.3 and Figure 4.6.

4.7 Conclusions

Analysing the running times of each of the (α, β)-k-Feature Set Approach for different real

world instances, it becomes clear that, even though many instances can be solved in reasonable

time by the exact approach, such as instances DS, ADMF, PD1, PD2 and PC; that is not

always the case and SM is a good example of that.Moreover, if it is the case that the solver

has to be ran several times, larger computation times such as those observed for PD1 and PC

could quickly become an issue.

Therefore, in this chapter, (α, β)-k-Feature Set Problem instances were detailed and anal-

ysed, and a suitable testbed to benchmark algorithms for the problem was proposed.

The Set (Multi) Cover instances available on the literature are not suitable for the purposes

pursued in this work primarily because they do not have the characteristics that are expected

to be found on practical instances of the (α, β)-k-Feature Set Problem. In particular, they have

|F|≫ |U|, as opposed to |U|≫ |F|, which is the expected. Moreover, they do not partition

U in two correlated and disjoint sets A and B, and doing so could break the particularities of

the instance, and the methodology involved would itself be a different problem.

The proposed testbed, generated with the method also proposed in this chapter, provided

an instance pool suitable to the purposes pursued. As argued on the introduction of this

chapter, safe-reductions could still be performed by the CPLEX presolve routine, and therefore

the difficulty of most of the instances proposed in Section 4.5 would be still comparable to that

of smaller instances. However, for the most demanding instances - which are most interesting
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- the reducibility is either not significant with respect to the instance size or still not enough

to make the problems tractable.

Observing the performance of the exact approach on the proposed testbed, it became

clear that for the second and last stages of the (α, β)-k-Feature Set approach (minimisation

of the number of selected features, and maximisation of β), the main difficulty is excessive

enumeration. That could be due to the fact that either the primal or dual bounds used by the

solver are unsatisfactory. On the other hand, given the small number of expanded nodes and

the excessively large running times, which included significant effort to finish work in progress,

obtaining any feasible solution at all seemed to be an issue already.

Finally, given the big computational effort involved in the four stage approach, it is rea-

sonable to question its effectiveness. Also, since it includes a hard and well known problem,

with many explored feasible solutions on the beginning, followed by a very demanding related

problem, with few feasible solutions and little space for improvement; different designs could

perhaps use more information obtained during the solution process on the following problems.
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Chapter 5

Heuristic Design and Implementation

When choosing a solution method for any problem, one should take into consideration aspects

about the characteristics of the instances being tackled.

The size of the instance affects the choices that regard resource availability, such as how

much time one can afford to spend searching for solutions and how much memory is available.

Exact combinatorial algorithms for NP-Hard problems usually require a lot of time and/or

memory but provide an optimality guarantee. That, however, is clearly impractical for many

large instances. Giving up the proof of optimality with approximative algorithms and heuristics

often leads to much faster and leaner methods. Still, one has to bear in mind the gap between

“tractable within reasonable time” and “efficient” (in terms of computational complexity).

Even though an O(n2) algorithm would be considered efficient (and cheap), it may still be

impractical, if the problem is big enough or if it often exceeds the time limit.

The characteristics of the instances affect this choice in what regards the approach. In-

stances with characteristics that can be exploited to speed up the solution process may be

solved using exact approaches, which include Integer Programming and specialised Branch-

and-Bound algorithms. In these cases, giving up the proof of optimality is often not necessary.

On the other hand, some instances may be more challenging for these approaches and heuris-

tics should be preferred in practice. If the instance not only has problematic characteristics,

but is also large, even simple search procedures may become impractical, and fast greedy

procedures may be more interesting in practice.
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As discussed on Chapter 3, the (α, β)-k-Feature Set approach involves four stages, for

which at least one is a NP-Complete problem1. Experience also showed that, even though the

first stage can be solved efficiently and, despite its NP-Completeness, many practical instances

of the second can also be tackled with exact approaches, that is not often the case for instances

that have been arising in recent studies (see Chapter 4). Also, the following two stages, which

only look for an optimal solution of the second with particular properties, are often even more

computationally demanding than the first two. Since the problem is highly symmetric, and

feasible solutions of any stage must be optimum for the previous, restarting optimization from

scratch, or simply from a feasible solution, might discard interesting information that could

be exploited.

Therefore, this chapter discusses heuristics and search techniques to tackle the (α, β)-k-

Feature Set approach, described on Section 3.2, in a different way. Instead of partitioning

the problem and solving the subproblems to optimality, the proposed heuristics treat the

approach as a single problem, and attempt to optimise all stages simultaneously from start

solutions that are optimal for the first stage and feasible for the second. Not only that has

the immediate advantage of not discarding information collected during the solution process,

but also ensures that, if computation has to be stopped, the incumbent solution has more

interesting characteristics than if the following stages were not performed at all, which would

be more interesting in practice.

This chapter starts by detailing how to obtain initial solutions with various algorithms

shown on Section 5.2. It then proceeds to Section 5.3 with methods to improve these solutions,

optimising all four settings simultaneously: α, β, k and the total covering. Next, Section 5.4

details how to avoid getting stuck on local minima, allowing the algorithms to explore other

regions of the feasible solution space, and increasing the chance of finding solutions of better

quality. Finally, Section 7.1 experiments with the proposed algorithms and summarises the

results. Section 8.1 concludes the chapter.

1The second stage is a particular case of the Set Multi Cover problem, which is NP-Complete. Also, the
(α, β)-k-Feature Set Problem is a generalization of the k-Feature Set problem, which is equivalent to the
(1, 0)-k-Feature Set Problem, and also NP-Complete(Garey and Johnson, 1979).
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5.1 Solutions and Movements

A solution for the (α, β)-k-Feature Set Problem is basically a set of selected features F ′. As

mentioned on Chapter 3, given values of α, β and k, this set of features must have at exactly

k vertices that cover the elements in A at least α times and the elements of B β times. In

the proposed implementation, however, only the value of α (α∗) is given, as it is defined

deterministically beforehand. The values of β and k are optimised simultaneously, whilst also

trying to maximise the total covering.

For such, two basic movements are considered in this work: select and deselect feature.

Given a set of selected features F ′, the select feature movement includes a feature f ∈ F

in it: select(f) = F ′ ← F ′ ∪ {f} ∈ F . After selecting a feature f , the covering requirements

du of its neighbours u ∈ N(f) also have to be decremented: du ← du − 1,∀u ∈ N(f). Also,

|N(f)| has to be added to the total covering and β has to be recalculated from scratch (see

Section 5.1.1 for a formal definition of how to calculate the objective function values).

Similarly, the deselect feature movement removes a feature f ∈ F from F ′. deselect(f) =

F ′ ← F ′\{f} ∈ F . After deselecting a features f , the covering requirements du of its

neighbours u ∈ N(f) also have to be incremented: du ← du + 1,∀u ∈ Nf . Also, |N(f)| has

to be removed from the total covering value and β has to be recalculated from scratch.

In this work we also use compound movements, such as swaps. These include at least one

of the basic movements, select and/or deselect, performed in any order. Let F1 ∈ F ′ and

F2 ∈ F\F ′ be arbitrary sets of selected and unselected features. A swap movement would

consist of performing deselect movements of features in F1 and select movements of features

in F2: swap(F1,F2) = F ′ ← F ′\F1 ∪ F2.

Figure 5.1 illustrates select and deselect movements.

5.1.1 Feasible Solutions and Improving Movements

As previously mentioned, in this work, four objective functions are considered hierarchically:

maximise α, minimise k, maximise β and maximise the total covering.

Since the first stage of the (α, β)-k-Feature Set approach can be solved to optimality

efficiently, the optimum value of α is known (α∗), and does not have to be further optimised.
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Figure 5.1: Given a universe U = {1..12} and the set of available subsets F = {a =
{1, 2}, b = {5, 6}, c = {9, 10}, d = {1, 2, 5, 9, 10}, e = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, f =
{6, 7, 10, 11}, g = {3, 4, 7, 8, 11, 12}}, In the figures below, the dark nodes represent the se-
lected features and the full edges represent their coverings.. If one performs a select movement
on a feature (say select(b) on (a)), k increases by 1 and the total covering increases by the
number of neighbours it has (two, in this case). The values of α and β have to be recalculated
by counting the minimum number of coverings on the elements of A and B, respectivelly (the
full edges), and wouldn’t change in this case as any other edge that is not a neighbour of b
would still be covered only once. A deselect(b) movement would have the exact opposite effect,
undoing this procedure. If we select {b, d, g}, however, both α and β would be increased to 2,
as all elements would be covered at least twice. Note also that, if we took k = 1, α = 1, β = 1
as arguments for the problem modeled by Figure 3.2, then (a) would be feasible, at it would
satisfy all the constraints. However, if we required that α = 2, β = 2 it would no longer be
feasible, for not covering the elements of A and B enough times. In this case, more features
would have to be selected and (b) would illustrate a feasible solution, with at least two full
edges connected to each element of A and B.

(a) In this picture, k = 1 because only one feature
({e})is selected, α = 1 because the current fea-
ture set ({e}) only covers each element of A once,
β = 1 because the current feature set only covers
the elements of B once and the total covering is
12, because it cover every element of the universe
exactly once.
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(b) In this picture, k = 4 because the current
feature set contains four elements ({b,d,e,g}), α =
2 because the current feature set only covers each
element of A at least twice, β = 2 because the
current feature set covers the elements of B at
least twice and the total covering is 25, because it
covers every element of the universe exactly twice,
with the exception of element 5, that is covered
three times.

1

2

3

4

5

6

a

b

c

d

e

f

g

7

8

9

10

11

12

66



5.2. CONSTRUCTIVE GREEDY ALGORITHMS

Therefore, throughout this work, a solution is feasible if all sample pairs u ∈ A have their

covering requirements satisfied, that is, du ≤ 0,∀u ∈ A.

Let G(U ,F ′, E) be the subgraph obtained by removing all nodes in F\F ′ and edges con-

nected to them2.

A solution is then evaluated observing the values of k, β and total covering on the graph

G(U ,F ′, E):

• k = |F ′|

• β = minu∈B{|N(u)|}

• Total Covering =
∑

u∈U |N(u)|

Therefore, a movement is considered improving if the resulting solution is feasible and

yields, with respect to the original solution, either (in this order):

1. A smaller value of k

2. A higher value of β, without increasing the value of k

3. A higher total covering, without decreasing the value of β or increasing the value of k

The function isBetter(F1′,F2′), referenced throughout this chapter, returns true if the

solution given by F1′ is better, in these terms, than F2′; and false otherwise.

This policy not only has the obvious advantage of saving the time that would be spent solv-

ing the two next stages separately but also acts in synergy with the overall search mechanism,

introducing diversity and preventing cycling.

5.2 Constructive Greedy Algorithms

In this work it is required that all feasible solutions be optimum solutions of the first stage of

the (α, β)-k-Feature Set approach. Therefore, the problem modelled in Figure 3.4 is solved to

optimality by inspection, and α is set to the obtained optimal value α∗. Then, the problem of

2Figure 3.8b illustrates that. While the full graph would be G(U ,F , E), the graph represented by the
coloured nodes and full edges would be G(U ,F ′, E).
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finding initial solutions for the problem under consideration is that of finding initial solutions

for the Minimum Cardinality Set Multi Cover problem, with the covering requirements set

to α∗ for all vertices in A and zero for all vertices in B. Note, however, that the algorithms

detailed in this work do not assume this particularity. That is because, after any selection the

covering requirements of (potentially) only a group of sample pairs is changed. Therefore the

associated subproblems no longer share the same covering requirements and are no longer the

Minimum Cardinality (α, β)-k-Feature Set modelled on Figure 3.5, but the unicost Set Multi

Cover Problem itself.

Constructive greedy heuristics are usually designed to be a fast and reasonably simple way

of finding feasible solutions for combinatorial problems. Their main characteristic is that every

choice is made in a greedy fashion, based on the current state of the solution. They make

the decision that seems best at the moment, never regretting or revisiting it. The remaining

problem is then assessed in the same way. This procedure is repeated until a feasible solution

is found.

Unless under very specific conditions where the greedy solution is optimal (see Cormen,

2001, for a discussion on such conditions), the solution can be improved by other refinement

methods or backtracking. Therefore, greedy algorithms are often used to provide initial solu-

tions and starting points for search algorithms. A good selection criterion, however, may help

to obtain better solutions in general.

In this work, two constructive greedy heuristics are considered: Algorithm 10 and Algorithm 11.

Note also that, rather than assuming that the proposed algorithms create a solution from an

empty one, with no selected features, they assume any solution as input and simply attempt to

make them feasible. That is, it selects features until all sample pairs in A have their covering

requirements du satisfied. An empty or infeasible solution would then have its set of selected

features increased and a feasible solution would have its set of selected features left unchanged.

Algorithm 10 selects the unselected feature that has more neighbours with unsatisfied

covering requirements until the solution is feasible. It attempts to make the solution feasible

using as few features as possible.

Algorithm 11 details a proposed variation that demands that the newly selected feature
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Algorithm 10: Greedy Algorithm 1: always choose the unselected feature that has
more neighbours with unsatisfied covering requirements. This method attempts to make
the solution feasible using as few features as possible.

Input: The set of selected features F ′, a bipartite graph G = (A,F , E) and α∗ < |F|
Output: A feasible solution
while ∃u ∈ A : du > 0 do // The solution is not feasible1

// select the unselected feature that has more neighbours in A with

unsatisfied covering requirements

select(maxf∈F\F ′{|{u ∈ N(f) ∩ A : du > 0}|});2

be a neighbour of the sample pair that needs more coverings. This modification attempts

to focus on the most infeasible sample pair, by minimising the difference between covering

requirements of the nodes in A as new features are selected.

Algorithm 11: Greedy Algorithm 2: always choose the unselected feature that has
more neighbours with unsatisfied covering requirements and covers the vertex with least
coverings. This method attempts to make the solution feasible using as few features as
possible, focusing on the most infeasible part of the solution.

Input: The set of selected features F ′, a bipartite graph G = (A,F , E) and α∗ < |F|
Output: A feasible solution
while ∃u ∈ A : du > 0 do // The solution is not feasible1

// find sample pair that needs more coverings

u ← maxu∈A{du};2

// select the unselected feature that has more neighbours with

unsatisfied covering requirements and covers the vertex with least

coverings

select(maxf∈N(u)∩(F\F ′){|{v ∈ N(f) ∩ A : dv > 0}|});3

5.2.1 Constructive Greedy Algorithms and Safe Reductions

Following the idea of greedy algorithms, another important technique is to always reduce the

problem to a kernel before working on it. In the (α, β)-k-Feature Set Problem case, one of

the steps that can be taken in that direction is to select any features that are provably in a

global optimum before making any greedy choices. After any selection, the remaining problem

can be seen as a (smaller) Set Multi Cover instance, as the covering requirements may no

longer be the same for every sample pair in A. Thus, safe reductions like the ones detailed on

Section 3.4 may be performed.
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It is important to notice that using safe reductions within the greedy algorithms does not

guarantee that the global optimum, or even a better solution, will be found, but increases

the chance that this may happen. Any reduction, such as a safe reduction or an arbitrary

movement, prunes a family of feasible solutions that do not include it. Therefore, if safe

reductions are performed before any unsafe greedy choice, it reduces the number of attainable

feasible solutions, which could include local optimum solutions, without losing global optima

that include the features selected, considering the choices that were already made. If feasibility

is achieved only through a series of safe reductions, the obtained solution is one of the many

possible global optima. However, every time an unsafe greedy choice is made, the task of

reaching a global optimum might become unattainable.

Algorithm 12 extends Algorithm 11 by attempting to reduce the current subproblem using

the safe reductions described on Section 3.4.

Algorithm 12: Greedy Algorithm 3: accounting for safe reductions. After reducing
the current subproblem to a kernel, choose the unselected feature with most unselected
neighbours that covers the vertex with least coverings. This method also attempts to
make the solution feasible using as few features as possible, focusing on the most infeasible
part of the solution, and always checking for safe reductions.

Input: The set of selected features F ′, a bipartite graph G = (A,F , E) and α∗ < |F|
Output: A feasible solution
while ∃u ∈ A : du > 0 do // The solution is not feasible1

// perform safe reductions

run(Algorithm 2);2

// find sample pair that needs more coverings

u ← maxu∈A{du};3

// select the unselected feature that has more neighbours with

unsatisfied covering requirements and covers the vertex with least

coverings

select(maxf∈N(u)∩(F\F ′){|{v ∈ N(f) ∩A : dv > 0}|});4

Due to the size of the instances under consideration (2000 features and 40000 sample pairs),

in this work, only the reduction detailed on Algorithm 2 is considered. Fortunately, it is not

only the cheapest to perform, but preliminary testing showed that it is also the most effective.

As the instance size grew, Algorithm 3-Algorithm 5 did not seem to be cost-effective, as they

introduced an overhead that made them prohibitive to be ran sporadically, or even only once,

and did not significantly contribute to the solution quality after Algorithm 2 was performed.
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A similar behaviour has already been reported for the Set Cover Problem by Beasley (1990a).

It is also interesting to notice that, by construction of the (α, β)-k-Feature Set approach,

all the neighbours of at least one pair of samples have to be selected by Algorithm 2: the

neighbours of the sample pair that defined α∗. That can be quite a significant reduction,

when the value of α∗ is relatively high, with respect to |F|.

5.3 Neighborhoods and Local Searches

As already suggested by Caserta (2007), very often Set Cover instances derived from biological

datasets, in special case-control datasets, differ from traditional ones because they have a num-

ber of elements in their universe much greater than the number of features. Considering the

methodology to create the graph representation of the instance, as described in Section 3.1.1,

this behaviour is easily confirmed, as it leads to a graph that has a number of elements of the

order of the number of samples squared. The same argument applies to (α, β)-k-Feature Set

Problem instances.

Motivated by Caserta’s suggestion that such problems may be better addressed with primal

intensive approaches, the methods proposed in this work consider swap based neighbourhoods

to improve the solutions’ quality. Since the main objective at this stage is to reduce the number

of selected features, such neighbourhoods comprise movements consisted of deselecting a set

of features and selecting one that is different, smaller and disjoint from the set of features

being deselected. Let these neighbourhoods be defined as Si,j and comprise
(|F ′|

i

)(|F|−|F ′|
j

)

possibilities, where i selected features are deselected, and j < i unselected features are selected

instead. It is easy to see that the bigger the set of features to be selected and deselected, the

bigger is the neighbourhood.

The simplest and smallest of these neighbourhoods would include all feasible solutions

that can be obtained simply by deselecting one feature. The next possibilities, in increasing

size of number of candidate movements, include all feasible solutions that can be attained

by swapping two selected features for one unselected (S2,1), three selected features for one

unselected (S3,1), three selected features for two unselected (S3,2) and so on.

71



5.3. NEIGHBORHOODS AND LOCAL SEARCHES

A local search attempts to find and perform improving movements in a solution’s neigh-

bourhood, “moving” then to a neighbouring better solution. When there are no improving

movements in a certain neighbourhood to be performed, the incumbent solution is a local

optimum with respect to that neighbourhood. The global optimum is the best of all existent

local optima. Typically, a local search stops when it reaches a local minimum.

Since every neighbourhood may include many different improving movements, which lead

to different incumbent solutions, with different neighbourhoods, the choice of which move-

ment to choose is also important and typically made in two greedy fashions: first or best

improvement. The former accepts the first improving solution it finds while the latter finds

all improving solutions and only accepts the one that leads to the biggest improvement to the

objective function.

Algorithm 13 and Algorithm 14 depicts typical swap-based first and best improvement

local searches, respectively.

Algorithm 13: A swap-based first-improvement local search. It performs the first
improving swap that it finds until none can be found.

Input: A bipartite graph G = (A,F , E), α∗ < |F|, an incumbent feasible solution F ′,
the number of features to remove SZ1, and include SZ2 (SZ1 > SZ2)

Output: A feasible solution with (potentially) improved values of k, β and/or total
covering

improved← TRUE;1

while improved do2

LABEL: marker ;3

improved← FALSE;4

// All possible subsets of F ′ of size SZ1

forall F1 ⊆ F ′ : |F1| = SZ1 do5

// All possible subsets of F\F ′ of size SZ2

forall F2 ⊆ F\F ′ : |F2| = SZ2 do6

if isBetter(F ′\F1 ∪ F2, F ′) then7

improved← TRUE;8

swap(F1, F2);9

GOTO marker ;10

Any movement in swap-based neighbourhoods always change the number of selected fea-

tures by the same amount. Therefore, the concept of a best improvement local search would

not apply directly, as all possible improving movements would yield the same advantage.
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Algorithm 14: A swap-based best-improvement local search. It finds all available
improving swaps, and performs the one that improves the given objective functions the
most.

Input: A bipartite graph G = (A,F , E), α∗ < |F|, an incumbent feasible solution F ′,
the number of features to remove SZ1, and include SZ2 (SZ1 > SZ2)

Output: A feasible solution with (potentially) improved values of k, β and/or total
covering

improved← TRUE;1

while improved do2

improved← FALSE;3

// All possible subsets of F ′ of size SZ1

forall F1 ⊆ F ′ : |F1| = SZ1 do4

// All possible subsets of F\F ′ of size SZ2

forall F2 ⊆ F\F ′ : |F2| = SZ2 do5

if isBetter(F ′\F1 ∪ F2, F ′) then6

// Keep track of the best improving solution found

if improved=FALSE then // First improving solution found7

F1∗ = F1;8

F2∗ = F2;9

improved← TRUE;10

else11

if isBetter(F ′\F1 ∪ F2, F ′\F1∗ ∪ F2∗) then12

F1∗=F1;13

F2∗=F2;14

if improved=TRUE then15

swap(F1∗,F2∗);16
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However, a best improvement local search for the (α, β)-k-Feature Set approach could still be

designed considering that three objective functions are optimised simultaneously, using the

objective function hierarchy to resolve ties as detailed on Section 5.1.1.

5.4 Escaping Local Minima

As previously mentioned, greedy algorithms may lead to good solutions but, unless under very

special circumstances, the obtained solutions can be improved by local search methods.

Local search methods guarantee that the solution will be a local optimum, but not always

guarantee that it will be a global optimum. Moreover, the bigger the neighbourhood defined,

the more expensive these methods are, because they can scale up to be fully enumerative.

Therefore, the neighbourhood size must be carefully chosen according to the heuristic’s design

and application: how big are the target instances and how often is the local search expected

to run. One can usually afford to run a more expensive, and therefore more effective, local

search for small instances, or with heuristics that do not use it too frequently.

Since running the same local search on different solutions may lead to different local optima,

which may include the global, an alternative would be to generate several different good

quality solutions, attempt to improve all of them using fast local searches and pick the best

one found. The methods proposed in this work introduce diversity to the pool of solutions

using randomizations of the proposed constructive greedy heuristics and local searches within

a Meta-Heuristic design.

5.4.1 Randomized Initial Solutions

The first randomization method, illustrated by Algorithm 15, simply deselect a few features,

chosen at random, and uses a greedy heuristic to restore feasibility. This allows the algorithm

to explore more of the infeasible solution space, as infeasible solutions that were not visited by

the greedy algorithm before may be attained. Therefore, the quality of the solutions obtained

using this method depends ultimately on the greedy algorithm adopted.

The next method, depicted by Algorithm 16, simply selects random redundant features to
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Algorithm 15: A randomization method focused on the greedy algorithm: deselect a
few features chosen at random, and use a greedy heuristic to make it feasible again. This
allows the algorithm to explore more of the infeasible region of the solution space.

Input: A feasible incumbent solution F ′, the number of features to deselect SZ1

Output: A (potentially) different feasible solution
Let F1 ⊂ F ′ : u ∈ F ′ is chosen at random;1

deselect(F1), |F1| = SZ1;2

// Either Algorithm 10, Algorithm 11 or Algorithm 12

greedy(F ′);3

swap the incumbent solution for one with more improving neighbouring solutions, hoping that

the local search can find a succession of improving movements that leads to a better solution.

After this procedure, the current solution would clearly become “worse”, as it would have more

selected features than before. Therefore the quality of the target solutions depends ultimately

on the ability of the local search, which is assumed to be performed afterwards, to reduce this

number and on the availability of redundant or dominated features.

Algorithm 16: A randomization method focused on the local search: select redundant
features on a given solution, moving the incumbent solution to one with more improving
neighbours.

Input: A feasible incumbent solution F ′, the number of features to select SZ2

Output: A (potentially) different feasible solution
Let F2 ⊂ F\F ′ : u ∈ F\F ′ is chosen at random, |F2| = SZ2;1

select(F2);2

// A local search that would attempt to reduce the number of selected

features is assumed to be performed afterwards

5.4.2 Randomized Choices

Given that all proposed greedy algorithms will most likely perform different unsafe greedy

choices, their obtained solutions could also be different. Moreover, none of them can guarantee

that the obtained solution will be optimal, or better than others for all cases. Therefore,

another way to introduce even more diversity to the methods described on Section 5.4.1 is to

choose one such greedy algorithm at random.

It is interesting to notice that, if the possibly increased running times of the most complex

methods, such as those that include safe reductions, do not contribute to solution quality,
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choosing the simpler ones sporadically as well would not compromise the solution quality, as

the most complex ones are still used as well, and would help to improve the iteration’s running

time.

It is also noteworthy that, sporadically starting from a solution of relatively worse quality

also contributes to the diversity of the initial solutions pool, for the same reasoning presented

on Section 5.4.1 for Algorithm 16.

5.4.3 Randomized Local Searches

As already discussed on Section 5.2 and Section 5.3, the order in which movements are per-

formed affect the solution structure, and consequently the information that will be available

to guide the next decision. Therefore, the order in which the available improving movements

are performed may affect the quality of the local minimum obtained.

Therefore, in addition to the first and best improvement approaches, another strategy

would be to randomize the local searches by electing the next improving movement to be

performed randomly. That could introduce more diversity to the refined solutions, if many

solutions are revisited and the election criterion has a significant impact on the final solution

quality. Algorithm 17 depicts a randomized first-improvement local search approach.

5.5 Metaheuristic Design

In this work, two main metaheuristics are used and combined on the proposed implementations

to help escaping local minima: Tabu Search and VNS.

5.5.1 VNS: Basic Design

The main heuristic framework used in this work is the Variable Neighbourhood Search, as

proposed by Mladenovic and Hansen (1997). It is a metaheuristic used to solve combinatorial

and global optimization problems whose basic idea is the systematic change of neighbourhood

within a local search.

As depicted by Algorithm 18, in its simplest form, it includes an ordered list of neighbour-
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Algorithm 17: A randomized swap-based first-improvement local search. It shuffles
a list of possible candidate moves and performs the first improving swap that it finds
until none can be found. Let RandomShuffle() be a function that randomly reorders an
ordered set.

Input: A bipartite graph G = (A,F , E), α∗ < |F|, an incumbent feasible solution F ′,
the number of features to remove SZ1, and include SZ2 (SZ1 > SZ2)

Output: A feasible solution with (potentially) improved values of k, β and/or total
covering

improved← TRUE;1

while improved do2

LABEL: marker ;3

improved← FALSE;4

// Let F ′ be an ordered set of selected features

RandomShuffle(F ′);5

// All possible subsets of F ′ of size SZ1

forall F1 ⊆ F ′ : |F1| = SZ1 do6

// All possible subsets of F\F ′ of size SZ2

forall F2 ⊆ F\F ′ : |F2| = SZ2 do7

if isBetter(F ′\F1 ∪ F2, F ′) then8

improved← TRUE;9

swap(F1, F2);10

GOTO: marker ;11
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hoods. The algorithm starts with an initial solution and, at each iteration, it is perturbed by a

shake procedure associated to the current neighbourhood, which is followed by a local search.

If the resulting solution is better than the best known, the best known solution is updated

and the current neighbourhood is reset to the first defined. The current neighbourhood is set

to the next in line otherwise.

Algorithm 18: A typical VNS algorithm in its simplest form. An ordered list of neigh-
bourhoods X = {x0, ..., x|X|−1} is assumed. On improvement the current neighbourhood
is set to the first of the list. Upon a number of failures, the current neighbourhood is set
to the next in line.

Input: A bipartite graph G = (A,F , E), α∗ < |F|, an incumbent feasible solution F ′,
the initial shake size SZ

Output: A near optimal feasible solution F∗′
// Initial incumbent solution: any constructive greedy heuristic, such

as Algorithm 10, Algorithm 11 or Algorithm 12

greedy(F ′);1

// The best known solution

F∗′ ← F ′;2

// Initial neighbourhood

x← x0;3

while the stopping criterion is not met do4

// Let shakex be a perturbation defined on neighbourhood x. That

could be SZ movements chosen at random in

X = {x0 = S1,0, x1 = S2,1, x2 = S3,1, x3 = S3,2...}, such that the obtained

solution is still feasible.

shakex(F ′, SZ);5

// Any local search procedure, such as Algorithm 13, Algorithm 14 or

Algorithm 17

search(F ′);6

if isBetter(F ′,F∗′) then7

F∗′ ← F ′;8

x← x0;9

else10

// nextn(x) returns the neighbourhood immediately after x on X.

E.g.: nextn(xi) = xi+1

x← nextn(x);11

A VNS design for the (α, β)-k-Feature Set approach using this scheme, would be to increase

the range of the swap sizes allowed in the neighbourhood, allowing the local search inspection

space to grow. In other words, the algorithm would start only with the redundancy tests,

that is, attempting to remove features without selecting any other. Upon failure, on the
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next iterations it would attempt to swap two selected features for one unselected, then three

selected features for one unselected, then three selected for two selected and so on. At the

beginning of each iteration a fixed shake procedure, such as random movements performed

in this neighbourhood (e.g.: remove a few features and select a few others, without losing

feasibility), such that the obtained solution is still feasible, would be used.

That, however, would be impractical for large instances as preliminary testing showed that

using a S2,1 neighbourhood increased the average computation time from a fraction of second

to a few minutes. That suggests that, even with an aggressive candidate list reduction such

local searches would still be too demanding and other alternatives have to be devised.

The Greedy Randomized Adaptive Search Procedure (GRASP) is a multi-start metaheuris-

tic originally proposed by Feo and Resende (1995) that iteratively obtains a start solution with

a randomized greedy algorithm, and tries to improve it with a local search. If the current so-

lution is better than the best known, it is updated. Unlike VNS, the same neighbourhood

structure is always searched, but the randomization of the greedy procedure allows the algo-

rithm to explore several parts of the solution space by sampling.

The proposed implementation uses both the idea of having multiple start solutions, ob-

tained by a randomized greedy method, of GRASP; and VNS’s idea of exploring random

solutions systematically farther from the best known. In other words, the “adaptive” part of

GRASP is designed in a VNS fashion.

5.5.2 VNS: Varying the Number of Newly Attainable Feasible Solutions

Instead of changing the neighbourhood itself, an alternative would be to change the im-

pact of the perturbation done by the shake procedure, but still using a similar mechanism.

Algorithm 19 illustrates this approach, using the VNS mechanism to increment the shake size

upon failure to improve the best known solution, and reseting the shake size to the initial

upon success.

One possibility is to use Algorithm 16, which simply selects features randomly, modifying

the number of random unselected features to be selected. It is important to notice that, the

bigger the set of selected features, the bigger the number of candidates for deselection, which
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could happen in different order. Therefore, even though the neighbourhood size does not

change, the number of available improving neighbours does. That also progressively increases

the computational time needed by the local search procedure, which could have to analyse

a longer candidate list, but less aggressively than increasing the neighbourhood itself to a

(combinatorially) larger one.

5.5.3 VNS: Varying the Number of Newly Attainable Infeasible Solutions

It is well known that the greedy algorithm usually provides good solutions for the Set Cover

problem (Caserta, 2007). Also, preliminary testing showed that most of the times the exact

approach solves the problem quickly, it is because it is solved to optimality on the root node.

That suggests that a guide function based on instance properties only, such as constructive

greedy heuristics like Algorithm 10, Algorithm 11 or Algorithm 12, for example; may indeed

lead to good solutions.

Therefore, another possibility is to explore the infeasible solution space around good known

solutions. In this work, this is done by deselecting features randomly, and restoring feasibility

using a constructive method. Unless a suffix of the list of selected features is discarded, in

order of selection, the greedy algorithm would hardly make the same choices, as the solution

structure would probably be different.

As detailed in Algorithm 19, the number of features to deselect is determined with a

mechanism similar to the neighbourhood selection of the VNS method: the algorithm begins

deselecting only a few random features. Upon failure to improve the best known solution, it

increases the number of features to be randomly deselected. On success to improve the best

known solution, the number of features to be deselected is reset to the minimum. This is often

regarded as Strategic Oscillation and is commonly used as a specialized procedure to Tabu

Search. Also, even though the neighbourhood size under consideration also does not change,

the number of candidates for removal do, varying the number of attainable neighbouring

infeasible solutions.
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Algorithm 19: Modified VNS algorithm. In this version, rather than moving to a
different (larger) neighbourhood, the shake size is modified using a similar mechanism,
controlling the number of solutions that can be attained after it. The algorithm starts
with a small perturbation on the best known solution and, upon failure, increases the
impact cause by the perturbation. On improvement, the perturbation size is reset to the
first used.

Input: A bipartite graph G = (A,F , E), α∗ < |F|, an incumbent feasible solution F ′,
the initial shake size SZ0 and shake size increase SZi

Output: A near optimal feasible solution F∗′
// Initial incumbent solution: any constructive greedy procedure, such

as Algorithm 10, Algorithm 11 or Algorithm 12

greedy(F ′);1

// The best known solution

F∗′ ← F ′;2

// Initialize the shake size

SZ ← SZ0;3

while the stopping criterion is not met do4

// Any of the proposed randomization methods: either Algorithm 16 or

Algorithm 15

shake(F ′, SZ);5

// Any local search procedure, such as Algorithm 13, Algorithm 14 or

Algorithm 17

search(F ′);6

if isBetter(F ′,F∗′) then7

F∗′ ← F ′;8

SZ ← SZ0;9

SZ ← SZ + SZi;10
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5.5.4 Tabu Search

It is important to notice at this point that even though cycling is avoided by only accepting

solutions that do not change the number of selected features but improve the other two ob-

jective functions under consideration, visiting (and rejecting) the same solutions repeatedly

could also occur and compromise the algorithm’s performance.

A naive approach to address this problem is to remember all visited solutions and prevent

the algorithm from revisiting them. As discussed on Chapter 4, (α, β)-k-Feature Set Problem

instances are often highly symmetrical, which means that too many solutions could be visited

during the algorithm’s runtime. Even using very compact data structures, that could mean

storing a huge amount of solutions, which not only would increase significantly the algorithm’s

memory requirements, and thus reduce the maximum size of tractable instances; but also that

the huge list of visited solutions would also have to be inspected very frequently.

Therefore, in this work, this issue is addressed by using Tabu Search (Glover, 1990; Glover

and Laguna, 1998; Glover et al., 1989). According to this framework, certain movements are

forbidden for some iterations. This short term memory mechanism attempts to prevent that

a solution that was recently visited be attainable before all the features that were selected in

it are available or selected again. Hopefully the chance that it happens would be very low,

and the greedy and search methods would be forced to perform different movements instead,

leading to different solutions.

By marking movements (selections or deselections) tabu, an optimal solution might be-

come unattainable. To avoid this situation, aspiration criteria are used. Usually, aspiration

criteria involve accepting a solution either by objective, that is, if the solution is better; or

direction, that is, if the direction of the search (improving or non-improving) does not change.

In this work the policy of accepting solutions by objective is adopted, and the proposed al-

gorithms implement this mechanism by not restricting the candidate movements of the local

searches with the tabu list, as they all necessary improve the incumbent solution. Then, if

the incumbent solution improves the best known, it is obviously accepted. The constructive

stages, however, consider only movements that are not tabu, and therefore lead the initial

solutions to different regions of the solution space. Also, if all features are marked tabu, the
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features that are in the tabu list for longest are unmarked.

Algorithm 20 details a modified version of the proposed VNS scheme (Algorithm 19) that

accounts also includes tabu search, as discussed on Section 5.5.4.

This mechanism relies on modified versions of the randomization methods that mark the

randomly selected features tabu. Algorithm 22 and Algorithm 21 detail these procedures.

Also, considering that Algorithm 21 uses a greedy algorithm to restore the solution’s feasi-

bility, modified versions of the greedy procedures that do not attempt to re-select the features

that were only just deselected are also necessary in this case. Algorithm 23, Algorithm 24 and

Algorithm 25 detail these procedures. Note that, in these cases, it could be the case that all

the features that could be chosen by greedy selection criterion are marked tabu. To address

this situation, a new aspiration criterion has to be defined: if all eligible features are marked

tabu, the one that best satisfies the greedy selection criterion, regardless of the tabu list, is

chosen.

5.6 Implementation Remarks

As with any heuristic design, implementation is often a key aspect for its success. This section

details some of the techniques use that had the biggest impact on the proposed algorithm’s

performance.

5.6.1 Partial Delta Evaluation

The first item worth noticing is partial delta evaluation, which regards analysing only the

part of a solution’s structure that changes after a movement and can have an impact on the

objective function. Even though obvious, that is probably the most important aspect to be

considered when designing the heuristic’s data structures, as they should allow fast evaluations.

For the particular problem under consideration, any feasible solution that is still feasible after

swapping a set of selected features for a smaller set of unselected features is improving. To

determine whether the solution will be feasible or not, one has to check if, after the movement,

all sample pairs still have enough coverings to satisfy their demand. Clearly, only the sample
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Algorithm 20: Modified VNS algorithm with Tabu Search. In this version, rather
than moving to a different (larger) neighbourhood, the shake size is modified using a
similar mechanism, controlling the number of solutions that can be attained after it. The
algorithm starts with a small perturbation on the best known solution and, upon failure,
increases the impact cause by the perturbation. On improvement, the perturbation size
is reset to the first used. This method differs from Algorithm 19 because it maintain
a tabu list that is used by the randomization and greedy procedures. A tabu tenure
list with positive integers is maintained and decremented after each iteration. Every
element in this list maps exactly one feature in F . If the associated tabu tenure is
positive, the feature is marked tabu. Every time a feature is selected or deselected by a
greedy algorithm, at the beginning of the iteration, it is assigned a tabu tenure. Even
though the local search may revert the feature’s status (selected or unselected) due to
the objective aspiration criterion, the greedy algorithm can perform the same movement
again on subsequent iterations before its tabu tenure expires (reaches zero).

Input: A bipartite graph G = (A,F , E), α∗ < |F|, an incumbent feasible solution F ′,
the initial shake size SZ0 and shake size increase SZi

Output: A near optimal feasible solution F∗′
// Initial incumbent solution: any constructive greedy procedure, such

as Algorithm 10, Algorithm 11 or Algorithm 12

greedy(F ′);1

// The best known solution

F∗′ ← F ′;2

// Initialize the shake size

SZ ← SZ0;3

// Initialize the tabu tenures with zero

T ← 0;4

while the stopping criterion is not met do5

// Any of the proposed randomization methods: either Algorithm 22 or

Algorithm 21

shake(F ′, SZ);6

// Any local search procedure, such as Algorithm 13, Algorithm 14 or

Algorithm 17. Note that this does not consider T because all

considered movements are improving with respect to the incumbent

solution, and therefore are accepted due to the aspiration

criterion.

search(F ′);7

if isBetter(F ′,F∗′) then8

F∗′ ← F ′;9

SZ ← SZ0;10

SZ ← SZ + SZi;11

// Tenure maintenance

LABEL: marker ;12

foreach ti ∈ T do13

ti ← max{0, ti − 1};14

if ti > 0∀t ∈ T then15

GOTO marker ;16

84



5.6. IMPLEMENTATION REMARKS

Algorithm 21: A randomization method focused on the greedy algorithm: deselect a
few features chosen at random, and use a greedy heuristic to make it feasible again. This
allows the algorithm to explore more of the infeasible region of the solution space. This
method differs from Algorithm 15 because it does not allow features marked tabu to be
deselected.

Input: A feasible incumbent solution F ′, the number of features to deselect SZ1, tabu
tenures T

Output: A (potentially) different feasible solution
// The set of features marked tabu

T ′ ← {fi ∈ F : ti ∈ T > 0};1

Let F1 ⊂ F ′ : f ∈ F ′\T ′ is chosen at random;2

deselect(F1), |F1| = SZ1;3

foreach fi ∈ F
1 do // Mark them all tabu4

// Assigns a random positive tabu tenure not greater than the maximum

allowed

ti ∈ T ← rand(1, SZt);5

// Either Algorithm 23, Algorithm 24 or Algorithm 25

greedy(F ′);6

Algorithm 22: A randomization method focused on the local search: select redundant
features on a given solution, moving the incumbent solution to one with more improving
neighbours. Provided that the start solution is feasible, this works only with feasible
solutions. This method differs from Algorithm 16 because it does not allow features
marked tabu to be selected.

Input: A feasible incumbent solution F ′, the number of features to select SZ2, tabu
tenures T , maximum tabu tenure SZt

Output: A (potentially) different feasible solution
// The set of features marked tabu

T ′ ← {fi ∈ F : ti ∈ T > 0};1

Let F2 ⊂ F\F ′ : u ∈ F\F ′\T ′ is chosen at random, |F2| = SZ2;2

select(F2);3

foreach fi ∈ F
2 do // Mark them all tabu4

// Assigns a random positive tabu tenure not greater than the maximum

allowed

ti ∈ T ← rand(1, SZt);5

// A local search that would attempt to reduce the number of selected

features is assumed to be performed afterwards
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Algorithm 23: Greedy Algorithm 1 considering Tabu Search: always choose the uns-
elected feature that has more neighbours with unsatisfied covering requirements. This
method attempts to make the solution feasible using as few features as possible. It differs
from Algorithm 10 because it does not allow features marked tabu to be selected, unless
strictly necessary.

Input: The set of selected features F ′, a bipartite graph G = (A,F , E) and α∗ < |F|
Output: A feasible solution
// The set of features marked tabu

T ′ ← {fi ∈ F : ti ∈ T > 0};1

while ∃u ∈ A : du > 0 do // The solution is not feasible2

// select the unselected feature that is not tabu and has more

neighbours in A with unsatisfied covering requirements

f ← maxf∈F\F ′\T ′{|{u ∈ N(f) ∩ A : du > 0}|} // if no such feature exists,3

disconsider the tabu list

if f = ∅ then4

f ← maxf∈F\F ′{|{u ∈ N(f) ∩ A : du > 0}|};5

select(f);6

Algorithm 24: Greedy Algorithm 2 considering Tabu Search: always choose the unse-
lected feature that has more neighbours with unsatisfied covering requirements and covers
the vertex with least coverings.This method attempts to make the solution feasible using
as few features as possible, focusing on the most infeasible part of the solution. It differs
from Algorithm 11 because it does not allow features marked tabu to be selected, unless
strictly necessary.

Input: The set of selected features F ′, a bipartite graph G = (A,F , E) and α∗ < |F|
Output: A feasible solution
// The set of features marked tabu

T ′ ← {fi ∈ F : ti ∈ T > 0};1

while ∃u ∈ A : du > 0 do // The solution is not feasible2

// find sample pair that needs more coverings

u ← maxu∈A{du};3

// select the unselected feature, that is not tabu, that has more

neighbours with unsatisfied covering requirements and covers the

vertex with least coverings

f ← maxf∈N(u)∩(F\F ′)\T ′{|{v ∈ N(f) ∩ A : dv > 0}|} // if no such feature4

exists, disconsider the tabu list

if f = ∅ then5

f ← maxf∈N(u)∩(F\F ′){|{v ∈ N(f) ∩A : dv > 0}|};6

select(f);7

pairs that are neighbours of the involved features are affected. Moreover, only the sample

pairs that lose coverings can make the solution infeasible. Therefore, it is enough to verify
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Algorithm 25: Greedy Algorithm 3 considering Tabu Search: accounting for safe reduc-
tions. After reducing the current subproblem to a kernel, choose the unselected feature
with most unselected neighbours that covers the vertex with least coverings. This method
attempts to make the solution feasible using as few features as possible, focusing on the
most infeasible part of the solution, and always checking for safe reductions. It differs
from Algorithm 12 because it does not allow features marked tabu to be selected, unless
strictly necessary.

Input: The set of selected features F ′, a bipartite graph G = (A,F , E) and α∗ < |F|
Output: A feasible solution
// The set of features marked tabu

T ′ ← {fi ∈ F : ti ∈ T > 0};1

while ∃u ∈ A : du > 0 do // The solution is not feasible2

// perform safe reductions

run(Algorithm 2);3

// find sample pair that needs more coverings

u ← maxu∈A{du};4

// select the unselected feature, that is not tabu, that has more

neighbours with unsatisfied covering requirements and covers the

vertex with least coverings

f ← maxf∈N(u)∩(F\F ′)\T ′{|{v ∈ N(f) ∩A : dv > 0}|} // if no such feature5

exists, disconsider the tabu list

if f = ∅ then6

f ← maxf∈N(u)∩(F\F ′){|{v ∈ N(f) ∩ A : dv > 0}|};7

select(f);8
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the coverings only of these sample pairs when evaluating whether a movement is improving or

not.

Figure 5.2 and Figure 5.3 illustrate swapping one feature for another and two features for

one respectively, and its affected sample pairs.

Figure 5.2: Affected sample pairs after swapping 2 features given a set of selected
features, substitute one feature (fa ∈ F

1) for another (fb ∈ F
2). Sets X and Y represent the

neighbours of features fb and fa, respectively. Only the covering of sample pairs in the white
areas have to be checked when evaluating the solution for feasibility.

X = N(fb) Y = N(fa)X ∩ Y

Delta evaluation remark: A solution will still be feasible after swapping one feature fa

for a feature fb if all the neighbours of fa that are not common to fb have at least one extra
covering. Since with the introduction of fb the features that are neighbours both of fb and fa

recover the covering that they lose with the removal of fa, they do not have to be checked on
evaluation.

�

5.6.2 Initial Solution

In order to obtain an initial solution for the VNS framework, any greedy algorithm such as

those proposed on Section 5.2 would suffice. However, from the implementation point of view,

it is advisable that such a solution be as good as possible. That is not only because it would

reduce the number of iterations of the method, when the stopping criteria involves the number

of consecutive unsuccessful iterations, but also because of delta evaluation. Provided one has

a good quality solution, the chance that the evaluation of a bad solution is stopped early is

bigger because the best known already yields stronger bounds that are more difficult to be
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Figure 5.3: Affected sample pairs after swapping 2 features for 1: given a feature
set, substitute two features (fa, fb ∈ F

1) for one (fc ∈)F2). Sets X,Y and Z represent the
neighbours of features fc, fa and fb, respectively. Only the covering of sample pairs in the
white areas have to be checked when evaluating the solution for feasibility.

X = N(fc)

Y = N(fa) Z = N(fb)

X ∩ Y ∩ Z

X ∩ ZX ∩ Y

Y ∩ Z

Delta evaluation remark: A solution that is still feasible after such a movement is always
improving because it yields a smaller (and therefore more interesting) selected feature set. Only
neighbours of the involved features will have their covering status changed. Also, only features
that lose coverings may affect the feasibility of the solution. Neighbours of the features that
will no longer be selected would lose exactly one covering while neighbours of the features that
will be selected after the movement would gain exactly one covering. Therefore, the number
of coverings to be gained or lost can be determined for by inspecting common neighbours. If
the current covering, accounting for the movement effects, of every neighbour of the features
that are being deselected is enough to satisfy its requirements the resulting solution is still
feasible.

�

satisfied or even improved.

Provided that the available greedy procedures obtain different solutions, and assuming that

their running time is sufficiently low, one way to start with a better quality solution, which is

used on the proposed implementation, is to run them all and start the VNS algorithm with

the best obtained solution as best known and incumbent solution.
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5.6.3 Data Structures

As already suggested on Section 3.4 and Section 5.3, most of the expensive operations used in

the proposed algorithm depend on set operations. Even though a binary search tree variant

would be the standard choice for such operations, the proposed implementation uses bitarrays

for a better use of memory space, equivalent ease to perform set operations using logical opera-

tors and due to the fact that it is possible to exploit architecture specific instructions to perform

such operations faster than if using standard methods. A collection of optimized bit operations

is hosted by Sean Eron Anderson at http://graphics.stanford.edu/~seander/bithacks.html.

Also regarding the memory requirements, it is interesting to notice that even though Set

(Multi) Cover instances derived from case-control datasets with the methodology described

in Section 3.1 have an immediate memory requirement of the order of O(n ×
(

m
2

)

) (to fit

the instance, disregarding the algorithm’s data structures), they can be represented using

only O(n × m) using the case-control format, if they are also (α, β)-k-Feature Set Problem

instances. Therefore, instead of simply running through the sample pairs in A and B, one

can run through the combinations of samples and testing to determine with they belong to

the same or different classes. The proposed implementation expands the case-control dataset

into a Set (Multi) Cover instance to favour speed, but using the original case-control format

would still be an interesting alternative, should the memory requirements be more critical than

speed. That, however, would add the overhead of the recurrent class test, and compromises

the implementation of optimizations for set operations, as the nodes neighbours would no

longer be explicit. It also would save relatively little space, as the coverings for each pair of

samples have to be kept in memory as well.

5.6.4 Caching

Caching is also an important item to be noticed, specially for problems that contain a solution

substructure. However, that should be used with caution, as very large datasets might be

challenging to store in memory already, without accounting for cached data. The work of Hua

et al. (2009, 2010) illustrates this point well, as they managed to isolate a substructure in

the Multi Set Multi Cover problem, and used it to propose dynamic programming algorithms
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both for the Set Multi Cover and Multi Set Multi Cover problems. That led to an enumerative

algorithm with polynomial space requirements and exponential time requirements. They claim

it to be theoretically the fastest exact method available but do not provide computational re-

sults, nor a benchmark testbed. The enumerative, exponential time demanding, characteristic

of their method would make it prohibitive for the target problems considered in this work, but

the efficient use of caching (the dynamic programming design) to speed it up to the state-of-

art highlight the importance of the technique in this scenario. In this work, feature rankings

(number of unselected neighbours of the sample pair) are cached as they are very frequently

needed by the greedy heuristics. These values do not change frequently and when they do,

it is not necessary that all other values are updated. Since a sample pair might have many

neighbours, running this search only when the it is updated sped up the greedy heuristics up

to ten times.

5.6.5 Parallelization

Finally there is the matter of parallelism. In this work, it was attempted in two different

ways. In the first, the focus was on the local searches, which are the most time demanding

procedures of the proposed methods. They were parallelized by delegating a disjoint equal

part of the search space to each available processor. However, the speed up obtained was not

significant.

The second attempt regarded diversification. With this parallelization, every processor has

its own incumbent solution, shares the best solution and performs the exact same job, with

different random seeds. Because each thread is given different random seeds, the start solutions

are also often different, allowing different threads to search different areas of the solution space,

covering a larger diversity of solutions concurrently. Because of the increased diversity and

amount of evaluated solutions, this parallelization of the algorithm allowed better quality final

results. Even though the algorithm took about the same time to meet the stopping criterion,

or even more, since it successfully found improved solutions more often; the time to reach a

target solution was typically shorter.
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5.7 Conclusions

In the previous chapter, it was possible to obtain a very diverse set of instances that can not

be solved by the exact approach. It was also possible to see that it such difficult instances

may also be found in real life (see SM, in Table 4.1, for example). One interesting observation,

however, was that the computational effort required to solve each of the four stages of the

(α, β)-k-Feature Set Approach could be significantly different. Also, the solution of the later

stages is directly related to the solution obtained on the earlier stages.

To address the first research question of this thesis, “Is it possible to quickly select features

on highly dimensional datasets, without compromising the robustness of the solution?”, this

chapter detailed five different methods. They combine different constructive heuristics and

local search procedures in modern meta-heuristic frameworks: GRASP, VNS and Tabu Search.

Since the proposed algorithms attempt to optimise all objectives simultaneously, they have

the direct advantage of not requiring that any stage be solved to optimality before the other

objectives are improved, quickly obtaining better overall quality suboptimal solutions whenever

the exact approach does not suffice. Since the whole feature selection approach is also dealt

with in one optimisation process, more information gathered for of each stage of the (α, β)-k-

Feature Set Approach is shared and exploited in the solution process of all subsequent others.

The main drawback of the proposed methods, however, is that they do not provide a

quality estimate by themselves, leaving the second research question “Is it possible to quickly

estimate how good these solutions would be?” to be addressed in the next chapter.
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Chapter 6

Solution Quality and Dual Bounds

In order to prove the optimality of a solution, two approaches are usually considered: to

enumerate all feasible solutions of the problem and pick the best; and/or to obtain upper and

lower bounds for the problem such that their objective function values match.

The first approach alone is clearly impractical for most NP-Complete problems. The

latter depends on the possibility to obtain a decreasing sequence of upper bounds and an

increasing sequence of lower bounds. Still, the best upper and lower bounds that one can

obtain may not always match. Nevertheless, the distance between such bounds can be taken

as a quality estimate. Most modern solvers implement a combination of both approaches to

prove optimality and guide their searches.

Any feasible solution of the original problem is a Primal bound. Finding Dual Bounds,

however, presents a different challenge, for which one of the most important approaches are

Relaxations. The idea behind those is to replace a difficult problem with a relaxed one, that can

be dealt with in practice, whose optimal value is at least as large, in the case of maximization

problems, or as small, for minimization problems; as the original.

One of the most popular relaxations are the Linear Programming relaxations, in which

the integrality constraints are dropped, allowing all the variables to assume real values. The

Integer Program becomes thus a Linear Program that can be solved in polynomial time.

One usually regards upper bounds for minimization problems and lower bounds for maxi-

mization problems as Primal Bounds. Similarly, lower bounds for minimization problems and
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upper bounds for maximisation problems are called Dual Bounds.

The dual bounds used to calculate the gaps shown on the Computational Results section

of the previous chapter (Section 7.1) were obtained using the exact approach, with the time

limit set to one hour. The exact approach relies on an Integer Program solver that uses

the linear relaxation to obtain bounds, and improves them using methods that are out of

the scope of this text. Even though these bounds would suffice to estimate the quality of the

solutions, obtaining a good dual bound using this method could be rather expensive. Specially

considering that the root relaxation, which is the only dual bound obtained fairly quickly and

without branching, is usually of poor quality for the (α, β)-k-Feature Set approach problems.

Also, since the methods proposed in this work do not solve the Integer Program directly, extra

space would be required to store the models and data structures used by the solver, which

could be quite significant, considering the target instance sizes. Therefore, this chapter details

alternative procedures to obtain dual bounds for the three last steps of the (α, β)-k-Feature

Set approach (as the first is solved to optimality), that do not rely on any external solvers and

share data structures.

Note, however, since that the models used usually yield poor bounds for the target type of

instances, with many more sample pairs than features (Caserta, 2007), the objective pursued

here is not to obtain tighter gaps than the current and/or prove optimality, but to provide a

quick quality estimate. As discussed on Section 1.2, for the target (biological) applications,

since the problems solved are only models of the real case, and the solutions obtained still have

to be validated using other techniques, they may not be good or even feasible, even if they are

the optimal solution for the model under consideration. In that case, obtaining solutions and

quality estimates quickly and efficiently is more important than obtaining tighter gaps that

could or could not be significant. That is specially true considering the target instance sizes,

for which exact and slower methods would not be able to obtain any bounds within reasonable

time.

Moreover, as it was observed on Chapter 4, many times the best known gaps are already

not ideal and require a significant computational effort to be obtained, even though they

rely on state-of-art techniques. However, depending on the expected objective function value
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range, gaps may not even be very descriptive of the solution quality. In particular, both

small differences in practice or small percent differences may not be worthwhile. Therefore,

in practice, a quick approach that obtains a reasonably competitive gap would be much more

appealing in practice than a very demanding method that always outperforms the first. With

that in mind, the main objective pursued in this chapter is to propose methods that would

excel in practice due to speed and memory requirements.

Section 6.1 starts by proposing quick bounds, that can be obtained constructively, for the

two last stages of the (α, β)-k-Feature Set approach. Section 6.2 then attempts to improve

these bounds and obtain bounds also for the second stage using a different, classic, technique:

Lagrangian Relaxation. Finally, Section 6.3 proposes dual models for all the stages that can be

explored on further research either to obtain bounds for the problems or devise new methods

to solve them. Section 8.2 then concludes this chapter.

6.1 Greedy Dual Bounds

The first bounds to be studied in this chapter are obtained in a greedy fashion, by solving a

very easy relaxation of the associated models. They can be obtained very quickly and can be

used as a rough estimate of the quality of the obtained primal solutions.

6.1.1 Lower bound for Min k

The first dual bound to be discussed is one for the minimum number of selected features.

By definition, in any feasible solution of the Set Multi Cover problem all sample pairs must

have their covering requirements met. Also, every feature can only cover any given sample

at most once. Therefore, considering that the Set Multi Cover problem under consideration

requires that each sample pair must be covered at least α times, at least α different features

are necessary to do so, or else either the solution is infeasible for not covering each sample pair

enough times, or some features are covering the same sample pair more than once.

That makes α a lower bound for k that is immediately available after the first stage of

the (α, β)-k-Feature Set approach is completed. This problem can be modelled as shown in
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Figure 3.4, and this Integer Program can be solved in polynomial time, and requires no extra

memory.

6.1.2 Upper bound for Max β

Analysing the mathematical models for the maximisation of α (Figure 3.4) and β (Figure 3.6)

it is interesting to notice that, disregarding the constraint that fixes the number of selected

features (row (3.6d)), the problems of satisfying the covering requirements of the nodes either

in set A or B (rows (3.6b) and rows (3.6c)) are completely independent. That is, if it does not

matter how many features can be used, the minimum covering requirement for sample pairs in

A also does not matter to determine the minimum covering requirement for sample pairs in B

because one can always use extra features to do so. Therefore, if one discards row (3.6d), rows

(3.6b) become redundant and can also be discarded. The resulting problem is then exactly

the same one depicted in Figure 3.4, swapping set A for B.

Because the relaxed problem maximises the same objective function on a larger set of

feasible solutions, its optimal solution to this problem provides an upper bound for the problem

of finding the Maximal β.

As already discussed, the model depicted on Figure 3.4, and therefore also this relaxation,

can be solved by inspection in polynomial time, and requires no extra memory.

Even though quick, this method relies on a relaxation that discards row (3.6d), which is

a very restrictive constraint of the model. That could compromise the quality the obtained

bounds. Moreover, it does not consider any of the arguments of the original model, α and k,

which also not only could have a negative impact on the quality of the obtained bounds, but

it means that it can not be improved as k is improved.

6.1.3 Upper bound for the Max Total Covering

Consider now the problem of maximising the total covering. This problem attempts to find

exactly k features that satisfy the covering requirements determined on the first stage of the

(α, β)-k-Feature Set approach and yield a maximal total coverage. Clearly, the maximum total

coverage that can be obtained on any given bipartite graph, using only k sample pairs from
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one side and disconsidering any covering requirement, is the sum of the k highest node degrees

in F , for if any of these vertices is swapped for another, the newly selected one would have a

smaller degree and the solution would therefore yield a smaller total coverage. Since no bigger

total covering value can be obtained, this procedure provides an upper bound for the problem

of determining the maximal total covering.

This bound can be obtained in O(n log n), since all one has to do is sort the set of available

features in decreasing order of degrees. As k is updated, the described procedure can be

implemented in O(1) simply by subtracting the degree of the kth node on the sorted list from

the current bound.

6.2 Lagrangian Relaxation

Another important method for obtaining dual bounds is the Lagrangian Relaxation, in which

the idea is to drop complicating constraints and add them to the objective function with a

non-negative penalty term called Lagrange Multiplier. That leads to a simpler (sub)problem

because the complicating constraints do not have to be satisfied any more. Since this problem

takes the Lagrange Multiplier as parameters, the Lagrangian Dual problem would then become

that of finding the Lagrange Multipliers that yield the best bounds. It is possible to show that

the best bound obtained by solving the Lagrangian Dual Problem is at least as good as the

one obtained by solving the Linear Programming relaxation.

To guarantee that the resulting problem is indeed a relaxation, its objective function must

have values at least as big (for maximization problems) or small (for minimization problems)

as the original. That is easily achieved by observing the sign of the constraints being dropped

and adding the penalised term accordingly. For example, consider the Integer Program z =

max{cx : Dx ≤ d, x ∈ X}, and suppose that the constraints Dx ≤ d make the problem

difficult. A Lagrangian Relaxation of this problem with Lagrange multipliers u would be

z(u) = max{cx + u(d − Dx), x ∈ X} and would yield an optimal solution x(u). The best

bound wLD would be obtained by solving wLD = min{z(u) : u ≥ 0}. The objective function

value of the optimal solution of the relaxed problem is always at least as big as that of the
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original problem because d−Dx ≥ 0 and u ≥ 0.

For further information about Duality, Bounds and Lagrangian Relaxations please refer to

Fisher (1981); Guignard (1998, 2003); Held and Karp (1970, 1971); Nemhauser and Wolsey

(1989); Wolsey (1998).

6.2.1 The Subgradient Method

It is possible to show that the Lagrangian relaxation z(u) of a problem is a piecewise linear

convex non-differentiable function. Also, it is possible to show that the penalized terms added

to the original objective function to define the Lagrangian relaxation (i.e.: d−Dx(u), on the

previous example) define a subgradient sg of z(u) (Wolsey, 1998). Therefore, the Lagrangian

Dual Problem can be solved by a straightforward generalization of the Gradient Algorithm:

the Subgradient Algorithm.

Algorithm 26: Subgradient algorithm. Let sgi be a subgradient of z(ui) and µi be
the step size elected for iteration i. At each iteration, compute and take a step on the
direction of the subgradient. The main difficulty of this method is to determine the step
size.

Input: An instance of the problem under consideration
Output: A (Lagrangian) dual bound wLD

/* Set all entries to zero */

Init u0;1

/* Iteration i */

while Stopping Condition is not met do2

/* Solve the relaxed subproblem */

Find z(ui);3

/* Move on the direction of the subgradient */

ui ← max{ui − µisgi), 0};4

i← i + 1;5

Since there is no way to prove that the obtained bound is optimal, Algorithm 26 usually

stops either after a certain number of iterations, a specified time limit, number of iterations

without improvement, or if the obtained lower and upper bounds match.

The main difficulty of this method is to choose step sizes for each iteration, and there are

various ways to do so (see Wolsey, 1998, for a few examples). In this work, the same method

used in Pessoa et al. (2010), and suggested by Wolsey (1998), is used.

98



6.2. LAGRANGIAN RELAXATION

Figure 6.1: Lagrangian Relaxation of the Min k (α, β)-k-Feature Set Problem.

z(λ, α) = min
∑

sf∈F

xsf
+

∑

up,q∈A

λup,q(α−
∑

sf∈F :∃e=(sf ,up,q)∈E

xsf
) (6.1a)

= min
∑

sf∈F

xsf
+ α

∑

up,q∈A

λup,q −
∑

up,q∈A

∑

sf∈F :∃e=(sf ,up,q)∈E

xsf
λup,q (6.1b)

= min
∑

sf∈F

(1−
∑

up,q∈A:∃e=(sf ,up,q)∈E

λup,q)xsf
+ α

∑

j∈A

λup,q (6.1c)

xsf
∈ {0, 1} (6.1d)

Considering a maximisation problem, if w is a dual upper bound on wLD, 0 < ǫk < 2

and µi = ǫk[z(uk) − w]/||sgi||2; then z(ui) → w or the Subgradient algorithm finds ui with

z(ui) ≥ w ≥ wLD within a finite number of iterations. Similarly, if w is a dual lower bound on

wLD, 0 < ǫk < 2 and µi = ǫk[w− z(uk)]/||sgi||2; then z(ui)→ w or the Subgradient algorithm

finds ui with z(ui) ≤ w ≤ wLD within a finite number of iterations for minimisation problems.

The difficulty here is that dual bounds w or w are typically unknown and a primal bound

(w ≤ wLD for maximisation problems and w ≥ wLD for minimisation problems) is used in

its place. However, if the term z(uk) − w on maximisation problems does not tend to zero

(w < wLD), w has to be increased. Similarly if the term z(uk)−w on maximisation problems

does not tend to zero (w > wLD), w has to be decreased (Wolsey, 1998).

6.2.2 Lower Bounds for Min k

Consider the problem of minimizing the number of selected features, as modelled on Figure 3.5.

As already mentioned, this problem is the Minimum Cardinality Set Multi Cover Problem, with

unitary costs. Following with the same idea of Beasley and Jørnsten (1992); Beasley (1990a);

Caprara et al. (1999); Caserta (2007); Ceria et al. (1998); Pessoa et al. (2011), dualizing row

(3.5b), the resulting problem, depicted on Figure 6.1, is a Lagrangian Relaxation of the Min

k (α, β)-k-Feature Set Problem.

Since the only differences between this problem and the aforementioned Set Cover La-

grangian relaxation are the constants, this problem can also be easily solved to optimality by
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6.2. LAGRANGIAN RELAXATION

inspection in polynomial time by setting:

xf =























1 if(1−
∑

up,q∈A:∃e=(sf ,up,q)∈E λup,q) < 0

0 if(1−
∑

up,q∈A:∃e=(sf ,up,q)∈E λup,q) > 0

∈ {0, 1} if(1−
∑

up,q∈A:∃e=(sf ,up,q)∈E λup,q) = 0

For the subgradient method, α−
∑

sf∈F :∃e=(sf ,up,q)∈E xsf
is a subgradient of z(λ, α).

6.2.3 Upper Bounds for Max β

Still following the idea discussed on Section 6.1.2, dualizing rows (3.6b) and (3.6c) from

Figure 3.6, and keeping row (3.6d), the model depicted on Figure 6.2 is a Lagrangian Re-

laxation of the Max β (α, β)-k-Feature Set Problem.

These subproblems are also easily solvable in polynomial time.

Since this is a maximisation problem, the optimal value of β is defined by:

β =























|F | if (1−
∑

up,q∈B
µup,q) > 0

0 if (1−
∑

up,q∈B
µup,q) < 0

{0..|F |} if (1−
∑

up,q∈B
µup,q) = 0

Considering that β ≥ 0, if (1 −
∑

up,q∈B
µup,q) positive, it only increases the objective

function value and should be exploited as much as possible. Therefore β is set to its upper

bound: β = |F |. If it is negative, the associated penalty should be minimised so, β is set it to

its lower bound: β = 0. If it is zero, it does not add or penalise the dual bound. So it does

not matter what value is chosen for β.

Regarding x, it is a simple matter of choosing the k features that contribute to the objective

function value most or, in the worst case, compromise the objective function least. Therefore,

to solve this part of the subproblem, it suffices to calculate (
∑

up,q∈A:∃e=(sf ,up,q)∈E λup,q +

∑

up,q∈B:∃e=(sf ,up,q)∈E µup,q) for every feature, sort them in decreasing order of these values,

and set the k highest ranked features to 1 and all the others to 0. The other terms of the

expression are fixed, so they do not depend on the solution.

The upper bound is obtained by calculating the objective function value, using the optimal
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Figure 6.2: Lagrangian Relaxation of the Max β (α, β)-k-Feature Set Problem.

z(λ, µ, α, k) = max β +
∑

up,q∈A

(
∑

sf∈F :∃e=(sf ,up,q)∈E

xsf
− α)λup,q +

∑

up,q∈B

(
∑

sf∈F :∃e=(sf ,up,q)∈E

xsf
− β)µup,q (6.2a)

= max β +
∑

sf∈F

∑

up,q∈A:∃e=(sf ,up,q)∈E

xsf
λup,q +

∑

sf∈F

∑

up,q∈B:∃e=(sf ,up,q)∈E

xsf
µup,q − α

∑

up,q∈A

λup,q − β
∑

up,q∈B

µup,q (6.2b)

= max(1−
∑

up,q∈B

µup,q)β +
∑

sf∈F

(
∑

up,q∈A:∃e=(sf ,up,q)∈E

λup,q +
∑

up,q∈B:∃e=(sf ,up,q)∈E

µup,q)xsf
− α

∑

up,q∈A

λup,q (6.2c)

s.t.

∑

sf∈F

xsf
= k (6.2d)

xsf
∈ {0, 1} (6.2e)

β ∈ {0..|F |} (6.2f)

�
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solution of the subproblem, with Equation 6.2a.

In this case,
∑

sf∈F :∃e=(sf ,up,q)∈E xsf
−α +

∑

sf∈F :∃e=(sf ,up,q)∈E
xsf
− β is a subgradient of

z(λ, µ, α, k).

6.2.4 Upper Bounds for Max Cover

Dualizing Equation 3.7b and Equation 3.7c from Figure 3.7, Figure 6.3 depicts a Lagrangian

Relaxation of the Max Cover (α, β)-k-Feature Set Problem.

These subproblems are solved in the same manner as the previous ones, considering

that the value of β is already fixed. Since the objective function is different, the reduced

costs also have to be recalculated for every feature sf as (dsf
+

∑

up,q∈A:∃e=(sf ,up,q)∈E λup,q +

∑

up,q∈B:∃e=(sf ,up,q)∈E µup,q).

The upper bound is obtained by calculating the objective function value, using the optimal

solution of the subproblem, with Equation 6.3a.

In this case,
∑

sf∈F :∃e=(sf ,up,q)∈E) xsf
− α +

∑

sf∈F :∃e=(sf ,up,q)∈E
xsf
− β is a subgradient

of z(λ, µ, α, β, k).

6.2.5 Implementation Remarks

6.2.5.1 Integer Rounding

Note that, from the integrality of the variables and data, valid objective function values must

also be integer. Since the Lagrangian multipliers are real values, their sum is also a real value.

Therefore, an obvious way to (slightly) improve the obtained bounds is to consider their floor

for maximisation problems and ceiling for minimization problems.

Also notice that, specially on the later iterations, as the step size taken on the subgradient

method gets smaller, the bounds tend to improve slower because the change on the Lagrangian

multipliers gets smaller. Therefore considering the integer rounding of the bounds forces that

the step size is adjusted taking into consideration a more practical bound, avoiding exceedingly

small changes.
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Figure 6.3: Lagrangian Relaxation of the Max Cover (α, β)-k-Feature Set Problem.

z(λ, µ, α, β, k, di) = max
∑

sf∈F

dsf
xsf

+
∑

up,q∈A

(
∑

sf∈F :∃e=(sf ,up,q)∈E)

xsf
− α)λup,q +

∑

up,q∈B

(
∑

sf∈F :∃e=(sf ,up,q)∈E

xsf
− β)µup,q (6.3a)

= max
∑

sf∈F

dsf
xsf

+
∑

sf∈F

∑

up,q∈A:∃e=(sf ,up,q)∈E

xsf
λup,q +

∑

sf∈F

∑

up,q∈B:∃e=(sf ,up,q)∈E

xsf
µup,q − α

∑

up,q∈A

λup,q − β
∑

up,q∈B

µup,q

(6.3b)

= max
∑

sf∈F

(dsf
+

∑

up,q∈A:∃e=(sf ,up,q)∈E

λup,q +
∑

up,q∈B:∃e=(sf ,up,q)∈E

µup,q)xsf
− α

∑

up,q∈A

λup,q − β
∑

up,q∈B

µup,q (6.3c)

s.t.

∑

sf∈F

xsf
= k (6.3d)

xsf
∈ {0, 1} (6.3e)

�
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6.2. LAGRANGIAN RELAXATION

6.2.5.2 Safe Reductions

Since safe reductions do not cut off feasible solutions, whenever a selection is performed via

a safe reduction, it can be regarded as a “mandatory” selection. Therefore, since the optimal

solution of the problem must have such features selected, the bounds obtained using procedures

that take the value of k under consideration might be improved if they force that the features

that were selected via safe reductions are among the k that it chooses.

Since such features must be present in the final solution, it does not matter in what

order they are selected. Therefore, the dual bounds obtained fixing any combination of these

variables are valid dual bounds for the original problem.

It is easy to see that, for the procedure detailed on Section 6.1.3, the bound obtained by

using all the selected features is the best. This algorithm always chooses the best case on

the unrestricted scenario to guarantee that the result is an upper bound. Therefore, making

any choice that differs from that, which would be very probable considering that the safe

reductions accounts for all the constraints, could include features with lower degrees which, in

turn, would lead to a lower upper bound.

6.2.6 Lagrangian Heuristics and Variable Fixing

Many times, dual information can be useful to assist primal heuristics, often leading to solu-

tions of very good quality. Pessoa et al. (2010) proposed a GRASP heuristic guided by the

information gathered by a Lagrangian Relaxation for the (weighted) Minimum Cardinality Set

Multi Cover problem.

Consider the primal problem formulated on Figure 3.5 and its Lagrangian relaxation de-

picted on Figure 6.1. After solving the Lagrangian (sub)problem to optimality, the obtained

solution may not be feasible for the primal. One first (naive) approach would be to simply

use any greedy heuristic to solve the remaining (sub)problem and remove redundant features.

However, the results produced by this approach are of very poor quality even for the weighted

case (Caserta, 2007).

Next, observe that, if z is an incumbent (primal) solution, any better solution must satisfy

∑

up,q∈A
λup,q + min{

∑

sf∈F
(1 −

∑

up,q∈A:∃e=(sf ,up,q)∈E λup,q)xsf
} ≤ z. Let N0 be the set of
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features that have a negative reduced cost rsf
= (csf

−
∑

up,q∈A:∃e=(sf ,up,q)∈E
λup,q) < 0∀sf ∈ F

(considering the optimal Lagrangian Multipliers) and N1 be the set of features that have a

positive reduced cost rsf
> 0∀sf ∈ F . If sk ∈ N1 and

∑

up,q∈A
λup,q +

∑

sf∈N0
rsf

+ rsk
≥ z,

then xsk
= 0 in any better feasible solution. Similarly, if sk ∈ N0 and

∑

up,q∈A
λup,q +

∑

sf∈N0 sk
rsf
≥ z, then xsk

= 1 in any better feasible solution (Wolsey, 1998).

Finally, the Lagrangian Multipliers could be used to guide the searches, restricting and/or

sorting the candidate lists and resolving ties.

6.3 Other Alternatives

One last attempt to obtain dual bounds would be to consider the dual problems directly.

Beasley (1990a) used this idea proposing a dual ascent procedure to find a (dual) feasible

solution for the dual of the Linear Programming relaxation of the Set Cover Problem to

initialize the Lagrangian Multipliers of the Lagrangian Dual problem solved. The discrete

version of the dual can be used instead. Since, in this case, the integrality constraints would

not be relaxed, the obtained bounds could be better.

Consider the problem pair depicted on Figure 3.5 and Figure 6.5, and the feasible solutions

(not necessarily optimal) z and w, respectively. Consider also the optimal solutions of their

Linear Programming Relaxations zLP and wLP , respectively.

By definition, z ≥ zLP and w ≤ wLP . From the principle of duality, wLP = zLP . Therefore,

w ≤ z.

Similarly, feasible solutions of the problems formulated in Figure 6.6 and Figure 6.7 provide

dual bounds for Figure 3.6 and Figure 3.7, respectively.

Tackling these models directly, however, proves to be a whole new challenge, as the prob-

lems are as difficult as the original ones. Moreover, strong duality not always can be proven

and, therefore, the optimal objective function values may still not match. This means that,

even though a tighter gap may be possible to find, it probably would not allow to prove

optimality and it may still be significantly large.
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Figure 6.4: Mathematical formulation of the dual problem of the Max α (α, β)-k-Feature Set
Problem.

min
∑

sf∈F

vsf
(6.4a)

∑

up,q∈A:∃e=(sf ,up,q)∈E

wup,q + vsf
≥ 0 ∀sf ∈ F (6.4b)

−
∑

up,q∈A

wup,q ≥ 1 (6.4c)

wup,q ≤ 0 ∀up,q ∈ A (6.4d)

vsf
≥ 0 ∀sf ∈ F (6.4e)

wup,q , vsf
∈ Z (6.4f)

�

Figure 6.5: Mathematical formulation of the dual problem of the Min k (α, β)-k-Feature Set
Problem.

maxα
∑

up,q∈A

wup,q −
∑

sf∈F

vsf
(6.5a)

∑

up,q∈A:∃e=(sf ,up,q)∈E

wup,q − vsf
≤ 1 ∀sf ∈ F (6.5b)

wup,q ≥ 0 ∀up,q ∈ A (6.5c)

vsf
≥ 0 ∀sf ∈ F (6.5d)

wup,q , vsf
∈ Z (6.5e)

�
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Figure 6.6: Mathematical formulation of the dual problem of the Max β (α, β)-k-Feature Set
Problem.

minα
∑

up,q∈A

wup,q + ku +
∑

sf∈F

vsf
(6.6a)

∑

up,q∈A:∃e=(sf ,up,q)∈E

wup,q +
∑

up,q∈B:∃e=(sf ,up,q)∈E

wup,q + u + vsf
≥ 0 ∀sf ∈ F

(6.6b)

−
∑

up,q∈B

wup,q ≥ 0 (6.6c)

wup,q ≤ 0 ∀up,q ∈ U
(6.6d)

vsf
≥ 0 ∀sf ∈ F (6.6e)

uunrestricted (6.6f)

wup,q , vsf
, u ∈ Z (6.6g)

�

Figure 6.7: Mathematical formulation of the dual problem of the Max cover (α, β)-k-Feature
Set Problem.

minα
∑

up,q∈A

wup,q + β
∑

up,q∈B

wup,q + ku +
∑

sf∈F

vsf
(6.7a)

∑

up,q∈A:∃e=(sf ,up,q)∈E

wup,q +
∑

up,q∈B:∃e=(sf ,up,q)∈E

wup,q + u + vsf
≥ deg(sf ) ∀sf ∈ F

(6.7b)

wup,q ≤ 0 ∀up,q ∈ U (6.7c)

vsf
≥ 0 ∀sf ∈ F

(6.7d)

uunrestricted (6.7e)

wup,q , vsf
, u ∈ Z (6.7f)

�
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6.4 Conclusions

The previous chapter detailed five different heuristic methods to deal with (α, β)-k-Feature Set

Approach. Even though they have lower computational requirements, they did not provide

a quality estimate to the proposed solutions. Therefore, in this chapter, the second research

question of this thesis is addressed: “Is it possible to quickly estimate how good these solutions

would be?”.

To do so, a more practical reasoning is used: it could not always be worth spending a lot of

time obtaining strong bounds, if the improvement is not of practical significance. In particular,

the expected objective function values for each stage of the (α, β)-k-Feature Set Approach are

significantly different, ranging from only a few features (in case of the maximisation of β, for

example) to large integer values (in the case of the maximisation of the total covering, for

example). This is specially important considering that the values obtained in one stage define

the next problem to be solved in the next, and it is not always possible to guarantee optimal

solutions for every stage, which makes dual bounds more like quality estimates rather than

optimality guarantees, cases in which speed would often be more important than the best

quality.

The methods to obtain dual bounds proposed in this chapter are based in worst case

scenario observations and Lagrangian Relaxation. The former are very efficient but are ex-

pected to provide weaker bounds, while the latter can be more computationally demanding

but provide better estimates. Also, both methods share the advantages of not depending on

external optimisation packages, and of being independent of the method used to obtain primal

solutions, which is quite interesting from the economic and practical points of view.
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Chapter 7

Computational Results

In Chapter 5 and Chapter 6 new methods were proposed to obtain feasible (primal) solutions

for instances of the (α, β)-k-Feature Set approach, to address the scalability problems observed

and reported in Section 4.6 and Section 4.7.

In this chapter, the proposed methods are tested and compared to existing (exact) method.

Section 7.1 details the experimental design used to test the primal methods while Section 7.2

do the same for the dual methods.

7.1 Primal Heuristics

Three experiments were performed: one to determine which greedy algorithm works best with

the proposed testbed, one to test the improvement provided by the proposed local search

procedures on the obtained solutions and one to test the overall performance of each proposed

(combined) heuristic.

The last experiment, however, deals with methods that include mechanisms to optimise

also β and the total covering. Therefore, information about all objective functions is provided

and the complete testbed proposed on Chapter 4 is used.

All algorithm runs were limited to one hour. In the case of the exact approach, CPLEX

version 12.2 was allowed one hour to solve each of the three models under consideration.

Throughout this section, the proposed algorithms are referred as detailed on Table 7.1.
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Throughout the experiments, the algorithms are combined and referred as detailed on Ta-

ble 7.2.

Regarding memory usage, for the instance size under consideration, |F| = 2000, |A| =

|B| = 20000, the proposed methods only used about 200MB, including data structures for eight

processors, as opposed to the few GBs required by CPLEX after many minutes of computation

on the harder instances, when the enumeration tree grew bigger. Given the obvious disparity,

memory usage tables are omitted for simplicity.

All experiments were conducted on an Intel Xeon with eight 2.5GHz processors and 16GB

of RAM. All methods, including the exact approach, were multithreaded and used all eight

processors with exactly eight concurrent threads.

7.1.1 Greedy Algorithms

Table 7.3 depicts the optimality gaps obtained for the minimisation of the number of selected

features for each class of instances under consideration. On average, GR3 outperforms the

others for most of the instances. However, observing also the associated standard deviation, it

is unclear which greedy algorithm is best, specially considering that GR3 is often outperformed

by the others for the instances where the exact approach performed worst. It is also interesting

to notice that such simple and efficient procedures are already able to outperform the exact

approaches for some of the most difficult cases.

7.1.2 Local Searches

In this experiment, only results of redundancy checks (S1,0) are shown because all other bigger

neighbourhoods defined were impractical for the instance size under consideration. They

increased the running times of the methods from the order of a fraction of seconds to the

order of several seconds or minutes without significant improvement. Such a behaviour would

make any algorithm that rely on them impractical for larger instances.

Table 7.4 shows the optimality gaps obtained by running a first-improvement local search

based on redundancy checks on the solutions obtained by each of greedy algorithms under

consideration. Similarly, Table 7.5 show the same information for a best-improvement local
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Table 7.1: Summary of Algorithms. Throughout this section the proposed algorithms are referred as described in this table. The first
group are the greedy algorithms under consideration. The Second, refers to the same algorithms from the previous group, followed
by a local search procedure. The third group refers to randomization methods under consideration. The fourth group simply refers
to the basic VNS framework under consideration. The last group refers to the combination of a greedy algorithm, a local search and
randomization methods into a metaheuristic framework.

Legend Algorithm Description

GR1 Algorithm 10 Standard constructive algorithm
GR2 Algorithm 11 Standard constructive algorithm with focus on the most infeasible part of the solution
GR3 Algorithm 12 Modified GR2, to account for safe reductions: tries to select features that have to be in the solution

(Algorithm 2) before using GR2’s greedy criterion.
GR4 – Runs all the available greedy heuristics and chooses the best obtained solution of all

LS1 Algorithm 13 on S1,0 First-improvement redundancy check local search (S1,0 neighbourhood: attempt to deselect one
feature without selecting another)

LS2 Algorithm 14 on S1,0 Best-improvement redundancy check local search (S1,0 neighbourhood: attempt to deselect one
feature without selecting another)

RM1 Algorithm 16 Selects a number of redundant features chosen at random
RM2 Algorithm 15 Deselects a number of features chosen at random
RM3 – Choose an available greedy algorithm at random to be used
RM4 Algorithm 17 Randomized First-improvement redundancy check local search (S1,0 neighbourhood: attempt to

deselect one feature without selecting another)

VNS Algorithm 19 Modified VNS algorithm with a varying shake size

TSRM1 Algorithm 22 Selects a number of features chosen at random, marking them tabu
TSRM2 Algorithm 21 Deselects a number of features chosen at random, marking them tabu
TSRM3 – Same as RM3, but considering the tabu lists in the same fashion as TSRM1 and TSRM2.
TSGR1 Algorithm 23 Same as GR1, but excluding features marked tabu from the list of candidates for selection
TSGR2 Algorithm 24 Same as GR2, but excluding features marked tabu from the list of candidates for selection
TSGR3 Algorithm 25 Same as GR3, but excluding features marked tabu from the list of candidates for selection
VNSTS Algorithm 20 Modified VNS algorithm with a varying shake size and tabu list maintenance
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Table 7.2: Combined Algorithms. Throughout this section the proposed algorithms are com-
bined as described in this table. The first column identifies the algorithm, while the five next
columns specifies the algorithms that were combined, as identified on Table 7.1. Namely, the
second column identify whether the proposed modified VNS scheme considers Tabu Search
or not. The third column identifies the algorithm used to generate the initial solution. The
fourth identifies the randomization method used. The fifth identifies the constructive greedy
heuristic used to restore feasibility after the randomization process, if applicable. Finally, the
last column identifies the local search procedure used.

Legend Restart Initial Shake Restore Feasibility Local Search

MH1 VNS GR4 RM1 – RM4
MH2 VNS GR4 RM2 RM3 RM4
MH3 VNS GR4 RM2 GR3 RM4
MH4 VNSTS GR4 TSRM TSRM3 RM4
MH5 VNSTS GR4 TSRM TSGR3 RM4

search based also on redundancy checks.

Inspecting Table 7.4 it is possible to see a similar behaviour as that observed on the results

with the greedy heuristics: running redundancy checks on solutions obtained with GR3 tended

to lead to better solutions on average, but with a higher variation, making it unclear which is

the best algorithm.

Comparing the results on Table 7.4 and Table 7.5, however, it is possible to see that the

values are very similar, making first improvement local searches more interesting due to the

fact that they analyse less possible movements and are, therefore, faster.

7.1.3 Meta-Heuristics

Since the algorithms considered in this section have a random component, each instance was

solved ten times with different seeds, and the average value was considered for five different

designs, detailed on Table 7.2.

The initial shake size (SZ0 in VNS and VNSTS) was always set to 0.5% of the selected

features what was increased by 0.1% at each failed iteration (SZi, in the same algorithms).

If the size of the shake was smaller than one, it was set to one. That would help to keep the

algorithm at the minimum change for a longer period of time, favouring a more intense search

on the neighbourhood closer to the best known solution.

Whenever applicable, every time a feature is deselected at random, or selected to complete
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Table 7.3: Greedy Heuristic Comparison. Each row represents the results obtained with each
proposed greedy heuristic for the minimisation of the number of selected features, in ascend-
ing order of optimality gap obtained with the exact approach. The first column identifies the
instance as described on Table 4.2. The second shows the gaps, calculated with Equation 4.5,
obtained using the exact approach. The last three the gaps obtained using each of the greedy
procedures proposed. The best gap amongst the three proposed heuristics is marked in bold-
face. The values in italics mark the cases where the proposed algorithms obtained a better
gap than the exact method.

Inst CPLEX GR1 GR2 GR3

1 0.00% 8.70% 10.23% 3.78%
26 0.00% 8.53% 10.27% 5.33%
51 0.00% 12.63% 14.18% 6.29%
76 0.00% 12.84% 15.14% 7.56%
101 0.00% 15.33% 18.17% 4.80%
41 3.23% 9.97% 8.07% 7.98%
46 3.88% 8.68% 7.35% 7.89%
16 3.92% 9.76% 8.29% 7.89%
21 3.97% 8.80% 7.38% 7.69%
66 4.34% 10.39% 8.35% 7.93%
61 5.82% 14.36% 11.78% 11.42%
71 5.93% 11.66% 9.15% 9.15%
36 6.33% 13.90% 12.35% 11.55%
11 7.96% 15.86% 14.18% 14.44%
96 9.05% 13.80% 12.36% 11.96%
116 9.84% 18.32% 15.31% 15.52%
86 13.61% 19.30% 18.49% 17.74%
81 17.00% 21.79% 23.23% 22.21%
121 17.67% 16.46% 15.00% 15.35%

31 21.69% 26.13% 26.63% 26.30%
6 22.66% 24.92% 27.22% 25.82%

111 27.13% 29.25% 29.13% 29.13%
106 27.85% 31.54% 32.49% 31.42%
56 43.87% 39.38% 42.99% 43.17%

91 52.98% 17.44% 15.20% 15.20%

Average 16.79% 16.52% 14.70%
Standard Deviation 8.05% 9.05% 9.88%

113



7.1. PRIMAL HEURISTICS

Table 7.4: Local Search Impact Comparison. Each row represents the results obtained after
running first-improvement redundancy checks (LS1 on S1,0) on the solutions obtained with
each of the proposed greedy heuristics for the minimisation of the number of selected features.
The first column identifies the instance as described on Table 4.2. The second shows the gaps,
calculated with Equation 4.5, obtained using the exact approach. The last three the gaps
obtained after running a first improvement local search based on redundancy checks on the
solutions obtained each of the greedy procedures proposed. The best gap amongst the three
proposed heuristics is marked in boldface. The values in italics mark the cases where the
proposed algorithms obtained a better gap in average than the exact method.

Inst CPLEX GR1+LS1 GR2+LS1 GR3+LS1

1 0.00% 5.31% 3.95% 3.25%
26 0.00% 4.70% 5.18% 3.73%
51 0.00% 7.04% 6.59% 4.91%
76 0.00% 7.84% 9.48% 6.00%
101 0.00% 7.97% 8.37% 4.22%
41 3.23% 6.58% 6.48% 6.67%
46 3.88% 6.34% 6.06% 6.53%
16 3.92% 7.79% 7.19% 6.47%
21 3.97% 7.17% 6.86% 6.97%
66 4.34% 6.93% 6.57% 6.20%
61 5.82% 11.24% 10.06% 9.78%
71 5.93% 8.46% 8.15% 8.08%
36 6.33% 10.63% 10.27% 10.27%
11 7.96% 12.57% 12.29% 12.02%
96 9.05% 11.22% 10.53% 10.32%
116 9.84% 14.40% 13.39% 13.39%
86 13.61% 16.31% 15.33% 16.22%
81 17.00% 18.39% 19.52% 18.96%
121 17.67% 14.14% 13.56% 13.71%

31 21.69% 23.53% 24.24% 24.24%
6 22.66% 22.27% 23.43% 23.62%

111 27.13% 28.02% 28.64% 27.89%
106 27.85% 30.06% 30.19% 29.04%
56 43.87% 38.77% 42.08% 42.27%

91 52.98% 14.20% 13.25% 13.65%

Average 13.68% 13.67% 13.14%
Standard Deviation 8.76% 9.41% 9.68%
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Table 7.5: Local Search Impact Comparison. Each row represents the results obtained after
running best-improvement redundancy checks (LS2 on S1,0) on the solutions obtained with
each of the proposed greedy heuristics for the minimisation of the number of selected features.
The first column identifies the instance as described on Table 4.2. The second shows the gaps,
calculated with Equation 4.5, obtained using the exact approach. The last three the gaps
obtained after running a best improvement local search based on redundancy checks on the
solutions obtained each of the greedy procedures proposed. The best gap amongst the three
proposed heuristics is marked in boldface. The values in italics mark the cases where the
proposed algorithms obtained a better gap in average than the exact method.

Inst CPLEX GR1+LS2 GR2+LS2 GR3+LS2

1 0.00% 5.31% 3.95% 3.25%
26 0.00% 4.70% 5.18% 3.73%
51 0.00% 7.04% 6.89% 4.91%
76 0.00% 7.84% 9.48% 6.00%
101 0.00% 7.97% 8.37% 4.22%
41 3.23% 6.58% 6.39% 6.58%
46 3.88% 6.16% 6.06% 6.53%
16 3.92% 7.39% 7.19% 6.47%
21 3.97% 7.17% 6.86% 6.97%
66 4.34% 6.79% 6.79% 6.13%
61 5.82% 11.06% 10.15% 9.69%
71 5.93% 8.23% 8.00% 8.15%
36 6.33% 10.98% 10.27% 10.39%
11 7.96% 12.84% 12.29% 12.16%
96 9.05% 11.08% 10.53% 10.60%
116 9.84% 14.04% 13.39% 13.75%
86 13.61% 16.41% 15.53% 16.31%
81 17.00% 18.39% 19.41% 19.52%
121 17.67% 14.00% 13.64% 13.93%

31 21.69% 23.53% 24.24% 24.24%
6 22.66% 22.27% 23.81% 23.62%

111 27.13% 28.15% 28.64% 27.89%
106 27.85% 30.06% 30.31% 28.91%
56 43.87% 38.77% 42.08% 42.08%

91 52.98% 13.96% 13.17% 13.57%

Average 13.63% 13.70% 13.18%
Standard Deviation 8.80% 9.43% 9.67%
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7.1. PRIMAL HEURISTICS

Figure 7.1: Optimality gaps, calculated with Equation 4.5, obtained with MH1, for the min-
imisation of the number of selected features. The instances are ordered in ascending order
of optimality gaps obtained using the exact approach, before the timeout of one hour. The
proposed approach results were at least as good as those of the exact approach considering
the minimisation of the number of selected features and maximisation of β for the instances
marked with a white square on the horizontal axis, and at least as good as the results con-
sidering all objective functions for the instances marked with a black square. In Appendix
D.2, Table D.2 detail the results obtained with exact approach, identify the instances in the
order they are shown and include also information about the performance of safe reductions,
running time, and size of the solution enumeration tree. Table D.5 details the results obtained
with the proposed heuristic and includes information about running times.
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an infeasible solution (except for the initial solution), it is marked tabu, with a tabu tenure

value in [0, p) (where p equals 10% of the maximum number of unsuccessful iterations) chosen

at random.

The algorithms stops after one hour of computation time or 100 unsuccessful iterations.

This value was also arbitrarily set after preliminary testing with different values.

Figure 7.1, Figure 7.2, Figure 7.3, Figure 7.4 and Figure 7.5, depict the obtained average

optimality gaps, and their respective standard deviation, for each proposed metaheuristic de-

sign. The instances, displayed on the horizontal axis are ordered in increasing order of the

optimality gap obtained with the exact approach, and are marked with a white square on the
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7.1. PRIMAL HEURISTICS

Figure 7.2: Optimality gaps, calculated with Equation 4.5, obtained with MH2, for the min-
imisation of the number of selected features. The instances are ordered in ascending order
of optimality gaps obtained using the exact approach, before the timeout of one hour. The
proposed approach results were at least as good as those of the exact approach considering
the minimisation of the number of selected features and maximisation of β for the instances
marked with a white square on the horizontal axis, and at least as good as the results con-
sidering all objective functions for the instances marked with a black square. In Appendix
D.2, Table D.2 detail the results obtained with exact approach, identify the instances in the
order they are shown and include also information about the performance of safe reductions,
running time, and size of the solution enumeration tree. Table D.5 details the results obtained
with the proposed heuristic and includes information about running times.
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Figure 7.3: Optimality gaps, calculated with Equation 4.5, obtained with MH3, for the min-
imisation of the number of selected features. The instances are ordered in ascending order
of optimality gaps obtained using the exact approach, before the timeout of one hour. The
proposed approach results were at least as good as those of the exact approach considering
the minimisation of the number of selected features and maximisation of β for the instances
marked with a white square on the horizontal axis, and at least as good as the results con-
sidering all objective functions for the instances marked with a black square. In Appendix
D.2, Table D.2 detail the results obtained with exact approach, identify the instances in the
order they are shown and include also information about the performance of safe reductions,
running time, and size of the solution enumeration tree. Table D.5 details the results obtained
with the proposed heuristic and includes information about running times.
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Figure 7.4: Optimality gaps, calculated with Equation 4.5, obtained with MH4, for the min-
imisation of the number of selected features. The instances are ordered in ascending order
of optimality gaps obtained using the exact approach, before the timeout of one hour. The
proposed approach results were at least as good as those of the exact approach considering
the minimisation of the number of selected features and maximisation of β for the instances
marked with a white square on the horizontal axis, and at least as good as the results con-
sidering all objective functions for the instances marked with a black square. In Appendix
D.2, Table D.2 detail the results obtained with exact approach, identify the instances in the
order they are shown and include also information about the performance of safe reductions,
running time, and size of the solution enumeration tree. Table D.5 details the results obtained
with the proposed heuristic and includes information about running times.
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Figure 7.5: Optimality gaps, calculated with Equation 4.5, obtained with MH5, for the min-
imisation of the number of selected features. The instances are ordered in ascending order
of optimality gaps obtained using the exact approach, before the timeout of one hour. The
proposed approach results were at least as good as those of the exact approach considering
the minimisation of the number of selected features and maximisation of β for the instances
marked with a white square on the horizontal axis, and at least as good as the results con-
sidering all objective functions for the instances marked with a black square. In Appendix
D.2, Table D.2 detail the results obtained with exact approach, identify the instances in the
order they are shown and include also information about the performance of safe reductions,
running time, and size of the solution enumeration tree. Table D.5 details the results obtained
with the proposed heuristic and includes information about running times.
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7.1. PRIMAL HEURISTICS

horizontal axis when the proposed approach could improve not only the number of selected

features but also the value of β, with respect to the results obtained by exact approach. Sim-

ilarly, a black square on the horizontal axis marks the instances where all objective functions

under consideration could be improved. Since instances are not numbered in these plots to

ease their readability, please refer Appendix D.2 (Table D.2-Table D.4 and Table D.5) for

information on individual instances, as indexed on Table 4.2.

Analysing these plots and tables Table D.2-Table D.4 and Table D.5, it is possible to see

that all algorithms had a very similar performance and they all had insignificant standard

deviations. It can also be seen that the proposed algorithms could improve the objective

functions rather frequently for the instances where the exact approach obtained a poorer gap.

For the instances where the exact approach obtained lower gaps, or the optimal solution, the

obtained solutions were also competitive, showing also small gaps, but not improving the best

known results.

Observing Table 7.6, however, it is possible to notice that the proposed heuristic that

chooses the constructive method at random performed slightly better in average than others

for most of the instances.

Moreover, looking at Table 7.7, it is easy to see that not only the proposed heuristics can

find high quality solutions, but they can also improve the state of art regarding the structural

quality of the solutions. It was remarkable how they could match or obtain higher values of

β and total covering even when matching or lowering the number of selected features without

compromising the solution process.

Table 7.8 compares the results of all proposed heuristics and the exact method for the

three last stages of the (α, β)-k-Feature Set approach for the real world instances. Table 7.9

details the respective running times.

Analysing these tables it is possible to see that the proposed results are very competitive,

reaching a difference of less than 5% from the optimal solution, using only a fraction of the

exact approach’s time.
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Table 7.6: Average primal Gaps and Running times, and their respective standard deviations,
for the exact approach and each of the proposed algorithms. Excluding the exact approach,
which is deterministic, these averages consider ten runs with different seeds for each instance.
In the case of the exact approach, the reported value is the average of the stacked values shown
in Figure 4.3. Table D.5 details all the obtained gaps for each instance individually. Table D.6
details all the running times of each proposed heuristic for each instance individually.

Optimality Gap

CPLEX ± MH1 ± MH2 ±
Average 14.30% – 11.15% 0.28% 10.66% 0.29%
Standard Deviation 16.97% – 9.34% 0.11% 9.28% 0.12%

MH3 ± MH4 ± MH5 ±
Average 10.87% 0.29% 10.67% 0.28% 10.86% 0.29%
Standard Deviation 9.27% 0.11% 9.29% 0.10% 9.25% 0.11%

Running Time (s)

CPLEX ± MH1 ± MH2 ±
Average 10421.75 – 6.92 1.51 11.25 2.85
Standard Deviation 8022.87 – 3.64 1.31 3.20 1.48

MH3 ± MH4 ± MH5 ±
Average 11.73 2.70 11.41 2.83 11.85 2.75
Standard Deviation 2.91 1.26 3.24 1.40 2.76 1.14

Table 7.7: Individual Stage Comparison: number of instances, out of 125, for which the
proposed heuristics at least matches the exact approach’s average results considering up to
one hour of computation for each model.

Objective MH1 MH2 MH3 MH4 MH5

min k 42 55 55 55 54
min k and max β 26 35 37 36 36
all the stages 13 20 21 20 21
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Table 7.8: Results of the heuristics for real world instances. On the following table, each of the lines is an instance detailed on Section 4.1
and each column the average objective function value of ten runs with different seeds of an algorithm and, the respective standard
deviation. The first column is the optimal solution obtained with the exact method, except for the maximum β and total covering
of the SM instance, as the exact method could not finish in reasonable time. In this case, the best solution found after one hour of
computation time for each of the stages is used. The best known value of β is also used as input for the Max Cover stage.

CPLEX Objective Function Value
Instance Optimum MH1 MH2 MH3 MH4 MH5

Min k

DS 36 36 36 36 36 36
ADMF 292 301.1+-1.9 295.2+-0.4 295.1+-0.6 295.1+-0.3 294.8+-0.6
PD1 8675 8862.10+-41.71 8716.20+-3.65 8711.60+-3.27 8716.10+-3.51 8710.30+-2.91
PD2 289 290.70+-0.67 289 289.10+-0.32 289 289
PC 867 890.10+-6.14 874.90+-1.29 874.50+-0.97 874.70+-0.95 874.90+-1.10
SM 128 130.90+-0.74 129.30+-0.48 129.70+-0.48 129.50+-0.53 129.50+-0.71

Max β

DS 10 10 10 10 10 10
ADMF 118 119.6+-2.6 121.5+-1 119.9+-2 121.7+-1.3 120.2+-1.6
PD1 3677 3741.50+-41.14 3686.70+-9.72 3682.30+-6.77 3689.30+-11.19 3677.80+-9.08
PD2 76 76.70+-0.82 74.80+-0.42 74.30+-0.48 74.80+-0.63 74.30+-0.48
PC 231 243.20+-4.80 239.80+-2.35 239.90+-2.60 239.30+-3.71 239.80+-2.20
SM 34 41.20+-1.69 39.70+-1.34 39.90+-0.88 39.80+-1.14 39.70+-1.16

Max Cover

DS 2016 2016 2016 2016 2016 2016
ADMF 581608 599322.3+-3505.9 587433.8+-908.4 587716.7+-1365.59 587334.90+-750.71 586890.20+-1294.54
PD1 24935478 25488617.20+-143021.69 25097835.20+-14386.85 25072108.60+-13272.63 25091660.80+-11042.40 25066935.60+-10851.66
PD2 53196 53562.00+-139.15 53251.20+-61.18 53244.00+-76.58 53235.20+-69.35 53229.00+-33.10
PC 7540529 7788214.90+-71081.45 7632191.90+-22189.82 7624780.30+-9450.75 7629536.10+-16132.33 7630646.30+-14157.34
SM 48560464 51560465.90+-336654.36 50833151.90+-226512.42 51004935.10+-219774.00 50897664.90+-246125.44 50883364.50+-302354.75
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Table 7.9: Running times of the heuristics for real world instances. On the following table, each of the lines is an instance detailed on
Section 4.1 and each column the average running time of ten runs with different seeds of an algorithm, and the respective standard
deviation. The first column is the total running time CPLEX used to solve all stages of the exact approach. In the case of SM, CPLEX
could not finish any of the last two stages within reasonable time.

Instance CPLEX MH1 MH2 MH3 MH4 MH5

DS 0.02 0.03 0.020 0.020 0.02 0.02
ADMF 13.4 0.56+-0.06 0.86+-0.15 0.81+-0.14 0.9+-0.2 0.93+-0.24
PD2 0.9 0.54+-0.05 0.30+-0.03 0.27+-0.02 0.31+-0.03 0.28+-0.04
PD1 1178.8 15.63+-0.40 26.41+-4.77 22.23+-1.69 26.07+-3.19 23.18+-1.63
PC 3091.8 3.84+-0.25 4.16+-0.73 3.93+-0.72 4.48+-0.48 3.72+-0.95
SM timeout 71.80+-13.35 100.34+-31.68 84.76+-15.58 81.07+-11.95 97.20+-27.64
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7.2. DUAL BOUNDS

7.2 Dual Bounds

In this section, the quality of the bounds obtained using the methods proposed in this chapter

is evaluated. It is important to note at this point that the advantage pursued with these

experiments is not on bound quality, but a better computation time vs quality tradeoff in

practice.

While the dual gaps reported from the exact method consider all cuts and safe reductions

it could find before either proving optimality or timeout, the proposed methods only account

for the safe reductions done using Algorithm 2 on the original problem, fixing the features it

selects. Therefore, the results obtained with exact method are expected to be at least as good

as the ones obtained by the proposed methods, and are reported simply to serve as a basis of

comparison for the expected bound quality, providing a better idea of how much room there

would be for improvement and if it would actually be worth the effort in practice.

The algorithms were allowed up to one hour to obtain bounds for all instances proposed

on Chapter 4. All gaps were calculated also using Equation 4.5 and Equation 4.6 (in the case

of the maximisation of β), considering the best primal solutions obtained after one hour of

computation time solving the respective model with the exact approach and the dual bounds

discussed in this chapter. These primal bounds are also used as input parameters for the

Lagrangian Relaxations and wLD values for the Subgradient method.

7.2.1 Lower bounds of Min k

Table 7.10 shows the optimality gaps obtained after up to one hour of computation time of

the exact method, the obvious lower bound on k described on Section 6.1.1, the associated

standard deviations, the lower bound obtained by solving the respective Lagrangian Dual

Problem described on Section 6.2.2 and their respective running times.

In this table it is easy to see that, as expected, the Lagrangian bounds were significantly

better than the obvious bound, even though it took also significantly more computational time.

The extra computational effort required, however, was still relatively low and the algorithms

were able to converge within reasonable time. The exact method, however, outperformed all

methods, but took up to 1000 times longer, reaching the time limit, even if compared to the
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Table 7.10: Dual Bounds for the minimisation of the number of selected features. Each row represents the results obtained with each
proposed method to obtain lower bounds for the minimisation of the number of selected features, in ascending order of optimality gap
obtained with the exact approach with a timeout set to 15, 30 and 60 seconds. The first column identifies the instance as described
on Table 4.2. The second shows the gaps obtained using the exact approach. The next two pairs show the optimality gaps calculated
with Equation 4.5, using the value of α and Lagrangian Dual respectively, considering the best primal bound obtained with the exact
method before one hour of computation time; and their computational time required to obtain these bounds.

CPLEX 15min CPLEX 30min CPLEX 60min Greedy Lagrangian

Instance gap time (s) gap time (s) gap time (s) gap time (s) gap time (s)

1 0.00% 1.45 0.00% 1.40 0.00% 1.47 99.81% 0.21 37.01% 2.72
26 0.00% 1.53 0.00% 1.41 0.00% 1.49 99.82% 0.21 39.26% 2.18
51 0.00% 2.40 0.00% 2.23 0.00% 2.32 99.83% 0.21 29.43% 3.90
76 0.00% 3.90 0.00% 4.12 0.00% 4.19 99.84% 0.60 27.00% 3.99

101 0.00% 2.01 0.00% 1.89 0.00% 1.96 99.84% 0.21 28.50% 4.92
41 3.65% 978.52 3.65% 2077.71 3.23% 3600.77 98.42% 0.45 12.64% 3.38
46 3.97% 940.06 3.97% 1839.29 3.88% 3602.80 98.28% 0.28 10.11% 3.43
16 5.44% 1688.22 4.26% 1956.22 3.92% 3600.88 98.30% 0.44 13.28% 3.54
21 4.43% 921.28 4.43% 1973.78 3.97% 3600.51 98.16% 0.27 11.74% 3.61
66 4.51% 1053.53 4.51% 1900.00 4.34% 3600.75 98.65% 0.90 10.81% 4.17
61 9.11% 1021.66 7.59% 1983.89 5.82% 3608.69 99.04% 0.54 19.72% 3.61
71 6.66% 954.77 5.93% 2021.40 5.93% 3601.15 98.53% 0.27 11.41% 4.14
36 6.33% 965.22 6.33% 1887.45 6.33% 3601.86 98.90% 0.53 24.18% 3.11
11 8.72% 981.24 8.72% 1985.35 7.96% 3601.81 98.85% 0.54 28.34% 3.12
96 42.30% 1117.65 9.05% 2557.28 9.05% 3767.36 98.66% 1.11 12.92% 4.42

116 48.34% 1025.95 10.06% 2264.67 9.84% 3603.45 98.78% 0.85 13.53% 1.54
86 13.61% 1135.91 13.61% 2216.59 13.61% 3637.28 99.16% 1.35 25.60% 2.68
81 25.88% 1340.15 26.30% 2005.14 17.00% 3603.38 99.57% 1.00 52.14% 2.60

121 48.88% 1587.99 18.27% 2080.09 17.67% 3601.56 98.79% 0.27 20.29% 3.25
31 40.84% 1084.49 40.84% 2451.36 21.69% 3601.69 99.52% 0.35 67.55% 2.48
6 43.72% 916.97 39.92% 1947.00 22.66% 3600.62 99.50% 0.35 67.67% 2.42

111 27.30% 1012.54 27.30% 2044.57 27.13% 3645.86 99.29% 0.52 38.69% 2.74
106 28.91% 1320.36 28.91% 1868.55 27.85% 3633.61 99.63% 0.83 54.83% 2.49
56 56.05% 1219.71 56.05% 1892.94 43.87% 3609.75 99.69% 0.74 73.46% 2.32
91 52.98% 1128.96 52.98% 2301.58 52.98% 3837.41 99.35% 1.21 55.55% 2.86

Average 19.27% 896.26 14.91% 1650.63 12.35% 2902.90 99.13% 0.57 31.43% 3.18
Standard Deviation 19.94% 494.78 16.99% 859.38 13.89% 1481.25 0.56% 0.34 19.89% 0.80
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7.2. DUAL BOUNDS

Table 7.11: Average Dual Gaps and Running times, and their respective standard deviations,
for the maximisation of β, obtained before one hour of computation with the exact method,
and using the greedy and Lagrangian procedures depicted on Section 6.1.2 and Section 6.2.3,
respectively. In Appendix D.3, Table D.7 details these values for each of the proposed instances
individually. Note that the gaps shown on this table are not on the percent form, but calculated
using Equation 4.6.

CPLEX Greedy Lagrangian

Gap Time (s) Gap Time (s) Gap Time (s)

Average 2.91 4939.38 5.85 0.49 4.14 594.45
Standard Deviation 3.10 6308.06 5.15 0.18 2.80 522.91

Lagrangian Dual.

7.2.2 Upper bounds of Max β

Table 7.11 presents optimality gaps calculated with Equation 4.6 with the values obtained

after up to one hour of computation time of the exact method, the obvious upper bound on β

described on Section 6.1.2 and the lower bound obtained by solving the respective Lagrangian

Dual Problem described on Section 6.2.3, respectively, along with their respective running

times. Note that, the timeout limit of one hour simply stops the algorithms from evaluating

any more solutions, and may exceed 3600 seconds due to clean up procedures and work in

progress.

Interestingly, the obvious bounds were not very far from all others in average, and only used

a derisive amount of computational time compared to the other methods. The Lagrangian

method was about ten times faster than the exact method in average, to obtain a dual bound

that differs by only two coverings.

7.2.3 Upper bounds of the Max Total Covering

Table 7.12 shows the average gaps obtained after up to one hour of computation time of

the exact method, the obvious upper bound on the total covering described on Section 6.1.3,

the lower bound obtained by solving the respective Lagrangian Dual Problem described on

Section 6.2.4 and their respective running times.
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7.2. DUAL BOUNDS

Table 7.12: Average Dual Gaps (in percent form, calculated with Equation 4.5) and Running
times, and their respective standard deviations, for the maximisation of the Total Covering,
obtained before one hour of computation with the exact method, and using the greedy and
Lagrangian procedures depicted on Section 6.1.3 and Section 6.2.4, respectively. In Appendix
D.3, Table D.8 details these values for each of the proposed instances individually.

CPLEX Greedy Lagrangian

Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s)

Average 3.00 2580.31 7.82 1.15 4.96 2997.86
Standard Deviation 2.99 1621.13 5.76 0.75 3.19 1148.44

In this table it is possible to see that, even though the bounds obtained by the exact method

were always the best, and the Lagrangian method outperformed the obvious, the latter require

a derisive amount of time when compared to the first. It is also interesting to notice that the

difference from one method to another does not exceed 5%.

7.2.4 Variable Fixing

Using the Lagrangian multipliers to fix variables one would be able to reduce the size of the

problem under consideration, however, preliminary testing showed that these conditions are

very rarely met, and very few variables can be fixed using this procedure. This idea was

the key to the success of every heuristic evolved from Beasley (1990a)’s, and the fact the it

becomes ineffective for the unicost case was already reported by Caserta (2007).

That, however, introduced an overhead to the feature comparisons that proved to be

too high regardless of the comparison criterion used, even if caching values. Even though

this approach led to solutions of good quality, often exploring less “intermediate” solutions,

exploring the neighbourhood of more randomized initial solutions with a faster algorithm

seemed to be a faster and more effective alternative. Also, exploring more “intermediate”

solutions has the obvious advantage of contributing to short term memory more often, which

is exploited by the Tabu Search structure.

The results of these attempts are omitted from this text because they were always signifi-

cantly worse than the ones produced by the primal heuristics alone, both in terms of quality

and computation time.
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Chapter 8

Conclusions

In the previous chapter, all the proposed methods were tested and compared to the existing

method. This chapter aims to answer the research questions presented on Section 1.4 using

the information learnt with the experiments performed on ??.

In particular, Section 8.1 discusses and answers the question “Is it possible to quickly select

features on highly dimensional datasets, without compromising the robustness of the solution?”

affirmatively.

Section 8.2, in turn, discusses and answers “Is it possible to quickly estimate how good these

solutions would be?” also affirmatively.

8.1 Primal Heuristics

In Chapter 5, different algorithms to address the (α, β)-k-Feature Set approach were proposed

and compared to the existing exact approach. The proposed greedy algorithms and local

searches acted as the centrepieces of different metaheuristics that optimised all three objective

functions under consideration at the same time: the minimisation of the number of selected

features, and the maximisation of β and total covering.

Regarding the proposed greedy heuristics, GR3 almost always outperformed the others.

However, the fact the other algorithms still performed better for a few instances suggests

that considering all three approaches could also be advantageous, not only for introducing
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8.1. PRIMAL HEURISTICS

solution diversity, but also for covering more different scenarios, where different algorithms

could perform better.

The analysis of the results obtained by running a local search based on redundancy checks

on the solutions obtained with each of the greedy heuristics under consideration followed the

same pattern observed on the greedy results alone. That, together with the fact that the

local search procedure did not improve the obtained solutions significantly, but only by less

than 2%, suggests that the initial solutions seemed to be the key to find better solutions. In

particular, refining solutions obtained with GR3 was most successful, but the fact that the

other algorithms could still outperform it for a few instances suggest that the using all of them

could still be advantageous.

The choice of the order that the movements are performed within the local search also

did not have a big overall impact. Therefore, the first-improvement would be preferred, for

being faster. However, since the results with first and best improvement were different, ran-

domizing the first-improvement approach is also an interesting idea, as it can be done without

significantly compromising the algorithm’s performance, and would contribute to the overall

solution diversity of the proposed methods.

The obtained overall results showed that all the approaches performed quite similarly,

obtained competitive results for instances where the exact approach performs well, and im-

proving the state-of-art for instances where the exact approach performs poorly. In particular,

the designs that explored the infeasible region of the solution space near known good solutions

were slightly more effective, specially when using all the proposed greedy heuristics, chosen at

random. That supports the theory that solution diversity was the key to the success of the

proposed algorithms.

As the number of selected features is reduced, the maximal values of β and total covering

can be drastically limited. The bigger the number of selected features, the bigger the maximal

total covering is expected to be. Similarly, the bigger the maximal total covering, the bigger

β can be as well. Therefore, once the number of selected features is reduced, matching or

increasing the values of β and/or total covering gets more difficult because of the lack of

viable options. Also because of the hierarchical form of the objective function, gaps for the
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8.1. PRIMAL HEURISTICS

maximum β and total covering, would not be comparable between solutions that do not share

the exact same objective function values for all previous stages of the approach, as the bounds

would be relative to different parameters, and thus, different problems.

Indeed, it is often the case for the most difficult instances that the exact approach can

find the optimal solution for the problem, or find a high quality one, but fails to find any

other feasible solution at all with a non-zero value of β. Since in this work the main target

are solutions with this specific structure, finding such solutions quickly is one of its main

contributions over traditional Set (Multi) Cover approaches.

Nevertheless, the proposed algorithms could also improve the best known solutions for

all objective functions under consideration. Once more, the approaches that explored the

infeasible solution space outperformed the one that only works on the feasible solution space.

That could be due to the fact that they rely on frequent runs of randomized constructive

greedy algorithms, which supports the theory that the simultaneous optimization component

also plays an important role to the success of the proposed algorithms.

Finally, not only the quality of the solutions obtained by proposed algorithms were compet-

itive with the existing (exact) approaches, but they outperformed the state-of-art algorithms

in computational time and memory usage, lowering significantly the resource requirements of

the approach. That would be particularly interesting not only to deal with bigger datasets

but also to design more complex approaches. In particular, for the real world instances, the

proposed methods could reach the optimal solution for the smaller and easier problems, and

very competitive results for bigger and harder ones using only a fraction of the computational

effort required by the exact approach. The main advantage of the proposed methods, how-

ever, is the ability to obtain good quality solutions for very difficult instances, that can not

be effectively solved by the exact approach within reasonable time. A good example of that

could be observed for the dataset proposed by Charlesworth et al. (2010), for which the exact

method can not reach the optimal solution within reasonable time, and the proposed methods

could quickly obtain solutions of very competitive quality to the best known.
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8.2. DUAL BOUNDS

8.2 Dual Bounds

From the experiments detailed in Section 7.2 it became clear that, in practice, not always the

exact approach is the best option to obtain bounds for the problem under consideration. The

quality of the obtained bounds is not always appreciable, but improving it often requires a

substantial investment in computational time.

Regarding the minimisation of k, an analysis of the tradeoff between computational effort

and bound quality suggests that, if the problem can not be solved using the exact method, the

Lagrangian method is often the best option in practice, as it seems to converge quickly enough

for most of the cases, while the exact method reaches the timeout too often. It is interesting

to notice that this problem takes the value of α as a parameter, which is an obvious lower

bound for the problem. When the distribution of edges is more uneven for the nodes in set

A, the instance tends to have nodes with a very small degree. That immediately leads also

to small values of alpha, and poorer associated bounds, that could be improved by the exact

method with the introduction of cuts and safe reductions that could be quite expensive to find

and apply. As the distribution of edges connected to the nodes in set A gets more uniformly

distributed, the instances tend to yield higher values of α and, therefore, better bounds that

can be attainable quickly using simpler procedures such as the Lagrangian method.

In the case of the maximisation of β, it seemed to depend even more on the instance

characteristics. A similar behaviour was expected regarding the edge density of the edges

connected to the nodes on set B, as the same reasoning can be applied. Even though the

phenomena was indeed observed, the fact that the problem also takes the number of selected

features as a parameter must also be taken into consideration and could be rather restrictive.

When the distribution of edges connected to the nodes in set B is very uneven, the value of

the obvious upper bound tends to be very low, and therefore good. In these cases it should

be preferred, given its immediate time requirement advantage. As the distribution of edges

connected to the nodes in set B gets more uniform, this bound tends to get poorer and the

imposed number of selected features tends to be more restrictive. In this case, procedures

that take such a parameter under consideration, such as the Lagrangian method, should be

preferred in case the exact method can not be applied.
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8.2. DUAL BOUNDS

Finally, considering the maximisation of the Total Covering, it was easy to see that, as

expected, good estimates could already be obtained using only the obvious bound obtained

with the method proposed on Section 6.1.3. Considering that it is expected that only a few

features are to be selected because of the second stage of the (α, β)-k-Feature Set Approach,

and that for the target instances have m ≫ n, it is reasonable to state that the imposed

number of selected features is the most restrictive constraint in this problem. Indeed, any

more selected features would imply a potentially significant increase in the objective function.

Fortunately, that is also the easiest constraint to satisfy and reflects positively on all the

obtained bounds. When the edge distribution of the nodes in U is very uneven, a great disparity

between node degrees is expected, and therefore, also a big range of objective functions values

is attainable. Since the obvious, greedy, lower bound considers the worst possible case, these

bounds were expected to be poorer. In this case, relatively more elaborate methods such

as the Lagrangian method, that consider the other parameters as well, could be preferred.

However, in practice the greedy bounds would be enough to satisfy the applications’ needs

without significantly compromising computational effort. As the edge distribution gets more

uniform, the node degrees are not expected to be very different, and therefore the worst case is

also not expected to be far from the best. In this case, the greedy method should be preferred,

given its immediate speed advantage.

Since the proposed Lagrangian methods provided good quality bounds, but required a lot

of computational effort, further research on this topic would include finding ways to speed

up these processes, which were out of the scope of this work. Boyd et al. (2003) surveys

a few methods to do so. Relax-and-cut schemes, as presented by Guignard (1998); Lucena

(2005), often work well for these purpose. Finding ways to initialise the hotstart method with

a reasonably good dual feasible solution, as done by Beasley (1987) for the Set Cover Problem,

could also be an interesting option. The subgradient method is also very prone to parameter

tuning, which can be further explored.

Further research on heuristic methods to solve the dual problems introduced on Section 6.3

would also be very interesting, considering the potential gain observed when less characteristics

of the problems involved were relaxed.
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8.3. CONCLUDING REMARKS AND FUTURE RESEARCH

8.3 Concluding Remarks and Future Research

In this thesis, the Feature Selection problem was revisited with focus on large biological

datasets by analysing the (α, β)-k-Feature Set approach, and proposing new approaches to

obtain solutions and estimate their quality quickly.

The main motivation for this project was the occurrence of instances that the current

state of art exact approach could not solve, even on fairly small cases. Generally speaking,

the problems were two-fold: over-abundance of solutions, and how to determine how to find

the best ones.

To the best of our knowledge at the time of this research, even though different works

used different methodologies to address different problems, there was only one main framework

proposed to solve the problem published on the literature. It consisted of a four stage approach

based on the solution of four combinatorial problems.

The first stage of the approach, which determines the maximum number of features that

explain the differences between the samples, can be solved in polynomial time and, therefore,

did not pose any challenge to the whole method.

The second stage of the approach, the well known unicost Set Multi Cover Problem, can

many times be solved in practice. However, it was possible to generate a pool of instances

which were difficult for the Integer Programming exact approach found in the literature.

Unsurprisingly, these instances were also problematic for the last two stages of the approach.

The third stage, which dealt with the matter of maximising the number of features that explain

the similarities between samples that are in the same class, given a fixed number of selected

features and number of features that are required to explain the differences between samples

in different classes; was particularly demanding, as even finishing one of its subproblems often

required more than 50% of the time limit available.

The case of instances with low edge density was particularly complicated for the third stage

because it led to problems with a very limited objective function value range. That leads to a

large set of solutions with the same objective function values, which can be a problem in case

the dual bounds, used to prune families of solutions in the exact method’s implicit solution

enumeration tree. When the dual bounds are not good enough, too many solutions can not be
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8.3. CONCLUDING REMARKS AND FUTURE RESEARCH

pruned and have to be analysed. This phenomenon was particularly important for the third

stage of the approach, as it dealt with a rather limited objective function value range, which

was often null.

Following Caserta’s advice on the target type of instances, several primal intensive heuris-

tics were devised for the problem. The key aspects that granted their success were a restricted

range randomization, to overcome the difficulty introduced by large search neighbourhoods

and the simultaneous optimization of all objective functions, to exploit the problem’s sym-

metry and avoid unnecessary recalculation and the overhead introduced by the multi-stage

approach.

Using this design it was possible to improve all the objective functions in many cases of the

testbed, mostly amongst the most difficult - and therefore more interesting - instances, using

only a small fraction of the computation time allowed. This is a rather great achievement,

specially considering that the objective functions are correlated and updated hierarchically.

That is specially because, once a higher priority objective function is improved, the next

ones tend to obtain lower values in general, therefore making the search for better secondary

objective values more difficult, if not non-existent.

Finally, the matter of obtaining dual bounds to estimate the quality of the obtained so-

lutions was addressed using various techniques. It was possible to show that not always a

great computational effort is worthwhile to obtain sufficiently good bounds in practice. In

particular, efficient simple bounds proved to be quite effective to provide quality estimates for

specific classes of instances. For the instances where they do not provide good estimates, the

characteristics that prevent that could be isolated and more elaborated methods were pro-

posed to deal with the problem as alternatives to the exact method. Even though the quality

of the best known dual bounds was not improved, the computational effort vs estimate quality

tradeoff could be significantly improved. That allows for bigger and harder problems to be

solved in practice as most of the times it is not strictly required that the solutions are provably

optimal, but only good enough. Also, the fact that the instances can be analysed to choose

the best method to deal with them is also of great practical and scientific interest, as this

information can also be used to develop new, more efficient, methods to address each case.

135
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Therefore, since the proposed methods complements the applicability of the existing, by

using only a fraction of the computational effort required whilst providing competitive so-

lutions, it was possible to answer affirmatively both the research questions proposed: “Is it

possible to quickly select features on highly dimensional datasets, without compromising the

robustness of the solution?” and “Is it possible to quickly estimate how good these solutions

would be?”.

Further work on the primal algorithms would include experimenting with heuristics that

implement cost-effective use of dual information. On the dual algorithms, it would also be

interesting to study effective ways to use primal information and other techniques to speed up

the most complex dual algorithms; and to design new methods to solve the dual formulation

of the models under consideration.
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Appendix A

Summary of Notation

m: Number of Samples.

n: Number of Features.

M : Value matrix of a case/control dataset.

mp,f : Value of sample p for feature f .

C: Class array of a case/control dataset.

cp: Class of sample p.

F : Set of available features in the (α, β) − k Feature Set of Set (Multi)Cover instance.

fi: The subset associated to feature i.

F ′: Set of selected features in F .

F1: Set of selected features in F , candidates for removal.

F2: Set of selected features in F\F ′, candidates for selection.

U : Universe of sample pairs in the (α, β) − k Feature Set of Set (Multi)Cover instance.

up,q: The pair of samples associated to the pair of samples p and q.

A: Elements of the universe that model a pair of samples that belong to different classes.

B: Elements of the universe that model a pair of samples that belong to the same class.

E : Set of edges in the (α, β) − k Feature Set of Set (Multi)Cover instance.

e = (sf , up,q): An edge e ∈ E that connects subset sf ∈ F to sample pair up,q ∈ U .

N(v): The neighbours of vertex v.

|S|: The cardinality of set S.
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γ∗: The optimal value of object (e.g.:variable, solution or set) γ.

du: number of coverings needed to meet the covering requirement of pair of samples u ∈ U .

T : Tabu tenures. Each of these values are associated with exactly one feature fi ∈ F . ti: The

tabu tenure of feature fi ∈ F
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Appendix B

Discretization and Pre-Selection of

Features

In order to discretize the data, and pre-select features, Fayyad and Irani’s algorithm is used.

Since the discretization topic is beyond the scope of this text, only an overall description of

the algorithm is shown, as presented in Berretta et al. (2008). For a detailed description of the

algorithm, a thorough analysis and proposed optimizations, please refer to the original paper

(Fayyad and Irani, 1993).

The algorithm, applied to every feature, starts by sorting the set of samples S in non

decreasing order of values. Next it identifies and calculates all possible threshold values that

distinguish between two existing classes C1 and C2. Those are the arithmetic mean of the

values of two adjacent samples with different classes in the sorted list created on the previous

step.

Next, it encodes the sample values based on each threshold found, 0 for samples with values

smaller than it and 1 otherwise; and separates them into two subsets S1, for samples encoded

as 0 and S2 for samples encoded as 1. Let P (Ci, Sj) be the proportion of samples in Sj that

are labelled as Ci. The class information entropy values are calculated using Equation B.1
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and Equation B.2. The threshold that yields minimum class entropy is chosen.

Ent(Sj) = −
2

∑

i=1

P (Ci, Sj) log2[P (Ci, Sj)] (B.1)

Then, the Minimum Description Length (MDL) Principle is applied to determine if the

obtained discretization is acceptable, which happens if and only if Equation B.5, calculated by

Equation B.2, Equation B.3 and Equation B.4; yields true. So, if any feature fails Equation B.5

it is excluded from further consideration, or in other words, does not pass Fayyad and Irani’s

entropy filter, and thus is not included in the discretized dataset. In Equation B.5, let m

be the total number of samples. In Equation B.4, define as c the number of different classes

present in the feature, c1 the number of different classes present in S1, and c2 the number of

different classes present in S2.

E(S) =
|S1|

|S|
Ent(S1) +

|S2|

|S|
Ent(S2) (B.2)

Gain(S) = Ent(S)− E(S) (B.3)

∆(S) = log2(3
c − 2)− [cEnt(S)− c1Ent(S1)− c2Ent(S2)] (B.4)

Gain(S) >
log2(m− 1)

m
+

∆(S)

m
(B.5)
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Appendix C

Case-Control Datasets: Valid and

Invalid Graph Extracts

This appendix complements Section 4.2 by illustrating how (α, β) − k Feature Set Problem

instances can be mapped into Set Multi-Cover instances.

Assuming that a partitioning of the nodes in A and B is provided, and that the cardi-

nalities of sets A and B are consistent with (C.1)-(C.2), the graph has to be translatable to

a case-control table. That is, there must exist a valid labelling of the samples such that all

associated subgraphs with three nodes are valid in the sense that they can be expressed in case-

control format without ambiguities, according to Figure C.1. All such possible ambiguities are

illustrated on Figure C.2.

Let C1 and C2 be the (disjoint) sets of samples that belong to the first and second classes,

respectively.

(

|C|

2

)

= |A|+ |B| (C.1)

|B| =
(|C1|

2

)

+
(|C2|

2

)

(C.2)

In these figures, every subfigure has three illustrations of the same scenario. From left to

right, the first illustration highlights the class relationship between three samples a, b and c.

The superscript (e.g.: a1) denotes the sample’s class, as seen on the third illustration, which is
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an extract of the dataset. The operator between any two samples highlights the relationship

modelled on the graph pattern depicted on the second illustration. While in Figure C.1 both

the classes and relationship match, on Figure C.2 they are contradictory and depict a absurd

scenarios, where the graph pattern can not be translated into values in a dataset’s table.
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Figure C.1: Valid (realistic) graph patterns for the (α, β)− k Feature Set problem, compared
to the Set (multi)Cover problem. Every subfigure has three illustrations of the same scenario.
From left to right, the first illustration highlights the class relationship between three samples o,
p and q. The superscript (e.g.: o1) denotes the sample’s class, as seen on the third illustration,
which is an extract of the dataset. The operator between any two samples highlights the
relationship modelled on the graph pattern depicted on the second illustration. Note that, for
the valid cases, both the classes and relationship match.

(a) Valid case with three equal values, all samples belonging to the same class, all class mirrors, rotations and
inversion are obvious symmetries. The value inversion is also an obvious symmetry.

o1

=

=

1p = q1

A F B
uo,p

s up,q

uo,q

Sample o p q

Value 0 0 0

Class 1 1 1

(b) Valid case with three equal values, one sample belonging to a different class. Any mirror or rotation only
changes the name of the nodes, yielding the same graph topology (and hence the same value matrix), being thus
a symmetry. The values and class inversion is also a symmetry.

o2
=

=

1p = q1

A F B
uo,p

s up,q

uo,q

Sample o p q

Value 0 0 0

Class 2 1 1

(c) Valid case with one equal value, all samples belonging to the same class, all class mirrors, rotations and
inversion are obvious symmetries. The value inversion is also an obvious symmetry.

o16= 6=

1p = q1

A F B
uo,p

s up,q

uo,q

Sample o p q

Value 0 1 1

Class 1 1 1
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o26= 6=

1p = q1

A F B
uo,p

s up,q

uo,q

Sample o p q

Value 0 1 1

Class 2 1 1

(d) Valid case with one equal value, one sample belonging to a different class. Any mirror or only changes the
name of the nodes, yielding the same graph topology (and hence the same value matrix), being thus a symmetry.
The values and class inversion is also a symmetry. One class rotation leads to case Figure C.1e

o16= 6=

2p = q1

A F B
uo,p

s uo,q

up,q

Sample o p q

Value 0 1 1

Class 1 2 1

(e) Valid case with one equal value, one sample belonging to a different class. Any mirror or only changes the
name of the nodes, yielding the same graph topology (and hence the same value matrix), being thus a symmetry.
The values and class inversion is also a symmetry. One class rotation is a symmetry and two class rotations lead
to case Figure C.1d

�
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Figure C.2: Invalid (unrealistic) graph patterns for the (α, β) − k Feature Set problem, com-
pared to the Set (multi)Cover problem. Every subfigure has three illustrations of the same
scenario. From left to right, the first illustration highlights the class relationship between
three samples o, p and q. The superscript (e.g.: o1) denotes the sample’s class, as seen on the
third illustration, which is an extract of the dataset. The operator between any two samples
highlights the relationship modelled on the graph pattern depicted on the second illustration.
Note that, for the invalid cases, the classes and relationship are contradictory.

(a) Invalid case with two equal values, all samples belonging to the same class, all class mirrors, rotations and
inversion are obvious symmetries. The value inversion is also an obvious symmetry.

o1

=

=

1p 6= q1

A F B
uo,p

s up,q

uo,q

Sample o p q

Value 0 0 ?

Class 1 1 1

(b) Invalid case with two equal values, one sample belonging to a different class.

o2

=

=

1p 6= q1

A F B
uo,p

s up,q

uo,q

Sample o p q

Value 0 0 ?

Class 2 1 1

(c) Invalid case with two equal values, one sample belonging to a different class. One rotation from Figure C.2b

o1

=

=

2p 6= q1

A F B
uo,p

s uo,q

up,q

Sample o p q

Value 0 0 ?

Class 1 2 1

(d) Invalid case with no equal values, all samples belonging to the same class, all class mirrors, rotations and
inversion are obvious symmetries. The value inversion is also an obvious symmetry.

o16= 6=

1p 6= q1

A F B
uo,p

s up,q

uo,q

Sample o p q

Value 0 1 ?

Class 1 1 1
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o26= 6=

1p 6= q1

A F B
uo,p

s up,q

uo,q

Sample o p q

Value 0 1 ?

Class 2 1 1

(e) Invalid case with no equal values, one sample belonging to a different class.

�
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Appendix D

Result Listings

This appendix contains the result listings for all data presented on the previous chapters. In

particular, it includes numerical values for each instance under consideration, to complement

information that was either presented graphically or summarized with average values, to ease

the interpretation of the text.

D.1 Chapter 4

The following tables complement the material presented on Chapter 4

Table D.1 details the information presented graphically on Figure 4.3 and identify the

instances in the order they are shown, according to the indexes presented on Table 4.2.
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Table D.1: CPLEX running times, in ascending order of total running time of the approach. Each row represents one of the proposed
instances. The first column identifies the instance, as described on Table 4.2. The next four columns show the running times of the
exact method for each of the (α, β) − k Feature Set approach stages, in order. The last column shows the total time required by the
whole approach. The exact method was allowed one hour to work for each stage. Even though the computational times are capped at
3600 seconds, this is when the exact approach is told to stop searching for solutions, and the values depicted in this graph include the
time needed to finish ongoing work, which can be significant.

Inst Max α Min k Max β Max Cover Total Time Inst Max α Min k Max β Max Cover Total Time
1 0.21 1.47 1.78 0.85 4.31 14 0.55 3600.69 4313.50 3600.33 11515.08
26 0.21 1.49 1.82 0.96 4.46 45 0.51 3601.10 4326.06 3607.24 11534.91
2 0.20 1.47 2.32 0.87 4.86 42 0.44 3600.50 4360.84 3600.23 11562.00
27 0.20 1.49 2.53 0.94 5.17 65 0.54 3600.12 4427.36 3600.24 11628.26
51 0.21 2.32 3.35 3.33 9.20 25 0.27 3601.43 4481.78 3600.08 11683.55
101 0.21 1.96 3.14 3.96 9.27 9 0.36 3602.04 4485.28 3602.18 11689.85
3 0.22 1.49 9.85 0.95 12.50 15 0.54 3600.43 4524.88 3600.84 11726.69
5 0.20 1.49 11.73 0.91 14.33 120 0.74 4047.72 4080.71 3607.88 11737.05
76 0.60 4.19 7.21 4.47 16.47 73 0.27 3603.15 4569.11 3600.35 11772.87
30 0.22 1.50 15.35 0.93 18.00 107 1.19 3630.12 4578.11 3600.98 11810.40
28 0.20 1.54 16.13 0.96 18.83 24 0.27 3601.47 4631.05 3600.07 11832.86
29 0.21 1.51 18.41 0.92 21.04 10 0.36 3600.51 4713.51 3600.59 11914.98
52 0.52 4.49 11.14 5.19 21.34 18 0.44 3600.86 4717.43 3600.50 11919.23
77 0.77 6.50 15.54 5.59 28.41 40 0.54 3600.20 4745.19 3600.37 11946.30
102 0.59 6.32 15.09 7.01 29.00 8 0.36 3601.71 4849.14 3600.34 12051.54
53 0.21 2.33 28.22 3.27 34.03 125 0.27 3602.17 4939.96 3600.44 12142.84
103 0.21 2.57 28.57 7.58 38.93 47 0.56 3600.43 4954.73 3600.35 12156.07
4 0.20 1.53 38.35 1.03 41.11 66 0.90 3600.75 5008.28 3600.38 12210.30
55 0.21 2.33 56.34 6.84 65.72 68 1.51 3605.45 5013.08 3605.92 12225.97
80 0.50 5.88 59.76 7.87 74.00 97 0.75 3678.08 4972.28 3601.22 12252.33
104 0.59 4.46 83.82 8.86 97.73 49 0.36 3606.40 5112.37 3602.36 12321.49
78 0.59 7.24 828.07 5.31 841.20 44 0.56 3600.93 5503.90 3600.33 12705.72
54 0.33 5.51 2015.07 18.36 2039.27 70 1.38 3600.49 5565.29 3602.75 12769.91
105 0.21 2.58 3190.20 10.61 3203.59 86 1.35 3637.28 5650.63 3600.05 12889.30
95 1.18 3602.48 1.85 1.13 3606.64 13 0.55 3601.49 5827.61 3600.08 13029.72
114 1.46 3601.21 4.46 4.26 3611.39 37 0.54 3601.05 5990.02 3600.62 13192.23
94 1.55 3604.82 3.32 2.31 3612.00 63 0.54 3600.09 6015.72 3602.58 13218.93
93 1.36 3633.40 3.51 2.36 3640.62 72 1.19 3602.08 6093.50 3600.21 13296.98
122 0.60 3667.36 3.56 2.22 3673.74 98 0.93 3666.05 6073.88 3601.85 13342.71
117 1.90 3678.63 5.43 2.36 3688.31 43 0.44 3600.47 6232.06 3600.59 13433.55
112 1.38 3765.07 5.23 2.33 3774.02 23 0.27 3600.57 6330.04 3600.63 13531.51

148



D
.1

.
C

H
A

P
T

E
R

4

(continued...)
Inst Max α Min k Max β Max Cover Total Time Inst Max α Min k Max β Max Cover Total Time
124 0.79 3775.52 2.97 2.14 3781.42 64 1.29 3605.74 6429.11 3602.39 13638.52
91 1.21 3837.41 3.39 2.66 3844.66 62 0.50 3601.78 6506.55 3603.56 13712.39
92 1.69 3844.08 2.50 2.11 3850.37 113 0.52 3646.75 6504.03 3600.44 13751.73
79 0.70 6.73 3920.06 7.57 3935.06 74 0.95 3618.17 7016.72 3600.56 14236.39
56 0.74 3609.75 43.94 1797.54 5451.96 115 0.54 3610.17 7055.09 3604.25 14270.05
22 0.28 3606.55 5.39 3600.14 7212.36 87 1.49 3634.55 7140.02 3600.38 14376.44
6 0.35 3600.62 22.78 3600.24 7223.99 119 0.73 3658.67 7115.17 3602.58 14377.15
16 0.44 3600.88 23.23 3600.05 7224.59 50 0.38 3600.64 7720.61 3605.07 14926.70
31 0.35 3601.69 22.51 3600.05 7224.59 118 1.16 3738.43 7654.72 3602.41 14996.72
21 0.27 3600.51 25.13 3600.06 7225.96 20 0.44 3600.14 7858.85 3600.41 15059.83
11 0.54 3601.81 29.01 3600.32 7231.68 19 0.44 3600.68 8807.05 3600.24 16008.41
36 0.53 3601.86 30.03 3600.07 7232.49 48 0.37 3600.65 9079.93 3600.56 16281.50
61 0.54 3608.69 27.93 3600.53 7237.68 108 1.38 3609.25 9847.98 3603.08 17061.69
111 0.52 3645.86 23.87 3600.17 7270.42 99 1.22 3602.50 10580.99 3600.13 17784.84
81 1.00 3603.38 65.47 3601.55 7271.40 32 0.37 3603.04 10710.56 3601.54 17915.51
46 0.28 3602.80 70.05 3601.47 7274.60 83 0.86 3600.44 12114.71 3600.14 19316.15
41 0.45 3600.77 106.72 3600.31 7308.25 89 1.17 3632.53 12724.39 3611.02 19969.11
106 0.83 3633.61 73.65 3601.04 7309.13 58 0.58 3623.48 12872.81 3600.34 20097.22
121 0.27 3601.56 122.89 3600.19 7324.91 75 0.27 3600.40 13277.99 3600.15 20478.81
67 1.29 3603.51 708.18 3602.48 7915.46 57 0.91 3666.87 14580.87 3600.06 21848.71
123 0.27 3632.55 867.24 3600.75 8100.81 100 0.58 3605.82 14770.70 3600.51 21977.61
82 0.89 3601.10 3616.47 3601.27 10819.73 90 1.81 3622.17 15364.48 3656.86 22645.32
38 0.54 3600.82 3698.03 3601.36 10900.75 59 0.81 3601.44 15533.25 3600.32 22735.82
71 0.27 3601.15 3741.13 3600.02 10942.57 84 1.11 3617.63 16122.19 3617.75 23358.68
12 0.28 3601.10 3805.79 3600.42 11007.58 60 0.67 3615.56 16169.38 3600.90 23386.50
7 0.36 3601.40 3814.76 3600.04 11016.56 110 1.14 3604.83 22707.50 3601.12 29914.59
17 0.44 3600.42 3921.63 3600.14 11122.63 69 1.37 3601.76 23599.10 3601.16 30803.38
34 0.36 3601.48 3928.71 3600.31 11130.86 88 1.55 3620.88 24499.53 3604.94 31726.89
35 0.36 3600.91 3989.54 3600.03 11190.83 109 0.94 3602.84 30353.52 3604.13 37561.43
39 0.54 3603.13 4040.56 3600.12 11244.35 85 0.87 3601.01 35976.86 3613.83 43192.57
96 1.11 3767.36 3883.89 3601.67 11254.02 Avg 0.66 2901.40 4939.38 2580.31 10421.75
116 0.85 3603.45 4239.25 3603.45 11447.00 StdDev 0.42 1456.03 6308.06 1621.13 8022.87
33 0.36 3601.26 4273.29 3600.26 11475.17
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Table D.2, Table D.3 and Table D.4 detail the information presented graphically on

Figure 4.4, Figure 4.5 and Figure 4.6, respectively, and also indentify the instances in the

order they are show, according to the indexes presented on Table 4.2.

Table D.3: CPLEX results the maximisation of β, in ascending order of optimality gaps.
Each row represents one of the proposed instances. The first column identifies the instance,
as described on Table 4.2. The second and third columns show the sizes of sets F and U ,
respectively, after performing safe reductions (CPLEX’s presolve). The next three columns
show the optimality gap, calculated using Equation 4.6, the running time to solve this stage and
the number of nodes of the solution enumeration tree that CPLEX had to expand, respectively.

Inst Red. F Red. U Gap Time Nodes Inst Red. F Red. U Gap Time Nodes

1 63.25% 2.49% 0.00 1.78 0 7 99.95% 99.79% 2.00 3814.76 2
2 75.05% 3.15% 0.00 2.32 0 32 99.95% 99.87% 2.00 10710.56 3
3 82.90% 17.46% 0.00 9.85 0 37 99.65% 97.63% 2.00 5990.02 6
4 41.80% 3.07% 0.00 38.35 13 62 99.65% 98.36% 2.00 6506.55 2
5 83.15% 51.14% 0.00 11.73 0 82 98.70% 92.04% 2.00 3616.47 3
6 99.85% 52.18% 0.00 22.78 0 87 99.70% 98.97% 2.00 7140.02 2
11 99.30% 53.16% 0.00 29.01 0 107 99.85% 99.60% 2.00 4578.11 0
16 97.75% 52.07% 0.00 23.23 0 8 100.00% 99.09% 3.00 4849.14 2
21 99.15% 52.23% 0.00 25.13 0 58 100.00% 99.42% 3.20 12872.81 0
22 99.10% 73.07% 0.00 5.39 0 33 100.00% 98.48% 3.24 4273.29 0
26 71.65% 2.84% 0.00 1.82 0 98 98.40% 100.00% 4.00 6073.88 3
27 81.80% 3.65% 0.00 2.53 0 23 99.25% 100.00% 4.00 6330.04 4
28 84.80% 29.60% 0.00 16.13 0 59 100.00% 99.42% 4.66 15533.25 0
29 82.90% 46.82% 0.00 18.41 0 83 99.95% 99.97% 4.95 12114.71 0
30 82.90% 49.18% 0.00 15.35 0 108 99.85% 99.82% 4.96 9847.98 0
31 99.95% 52.56% 0.00 22.51 0 60 100.00% 99.42% 5.00 16169.38 3
36 99.65% 55.17% 0.00 30.03 0 68 99.20% 100.00% 5.00 5013.08 2
41 97.15% 53.05% 0.00 106.72 0 73 98.35% 100.00% 5.00 4569.11 3
46 99.20% 54.49% 0.00 70.05 0 38 99.65% 100.00% 5.00 3698.03 3
51 81.40% 3.60% 0.00 3.35 0 13 99.40% 100.00% 5.00 5827.61 3
52 83.45% 5.38% 0.00 11.14 0 18 97.85% 99.99% 5.00 4717.43 4
53 83.45% 32.80% 0.00 28.22 0 43 97.15% 99.92% 5.00 6232.06 4
54 83.45% 51.87% 0.00 2015.07 20 118 99.35% 100.00% 5.00 7654.72 3
55 48.45% 4.00% 0.00 56.34 111 49 99.20% 100.00% 5.00 5112.37 2
56 100.00% 52.48% 0.00 43.94 0 113 99.85% 100.00% 5.37 6504.03 0
61 97.80% 53.39% 0.00 27.93 0 9 99.95% 99.89% 5.81 4485.28 0
67 99.20% 87.90% 0.00 708.18 0 63 97.80% 99.99% 5.87 6015.72 0
76 82.10% 3.83% 0.00 7.21 0 34 99.95% 99.94% 5.90 3928.71 0
77 82.75% 5.64% 0.00 15.54 0 14 99.40% 100.00% 5.99 4313.50 0
78 82.75% 34.26% 0.00 828.07 26 19 97.85% 100.00% 6.00 8807.05 4
80 82.75% 52.21% 0.00 59.76 0 99 98.40% 100.00% 6.00 10580.99 3
81 98.70% 51.35% 0.00 65.47 0 15 99.40% 100.00% 6.00 4524.88 2
91 0.00% 0.00% 0.00 3.39 0 48 99.20% 100.00% 6.00 9079.93 3
92 0.00% 0.00% 0.00 2.50 0 20 97.85% 100.00% 6.00 7858.85 3
93 0.00% 0.00% 0.00 3.51 0 25 99.25% 100.00% 6.00 4481.78 2
94 0.00% 0.00% 0.00 3.32 0 109 99.85% 99.82% 6.11 30353.52 0
95 0.00% 0.00% 0.00 1.85 0 64 97.80% 99.99% 6.14 6429.11 2
101 79.60% 3.59% 0.00 3.14 0 10 99.95% 99.89% 6.32 4713.51 0
102 80.75% 5.12% 0.00 15.09 0 44 97.15% 99.99% 6.42 5503.90 0
103 53.15% 2.64% 0.00 28.57 7 35 99.95% 99.94% 6.43 3989.54 0
104 34.65% 2.06% 0.00 83.82 5 88 99.70% 100.00% 6.50 24499.53 0
105 81.45% 52.05% 0.00 3190.20 612 110 99.85% 99.82% 6.77 22707.50 0
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Table D.2: CPLEX results the minimisation of the number of features, in ascending order
of optimality gaps. Each row represents one of the proposed instances. The first column
identifies the instance, as described on Table 4.2. The second and third columns show the
sizes of sets F and A, respectively, after performing safe reductions (CPLEX’s presolve). The
next three columns show the optimality gap, calculated using Equation 4.5, the running time
to solve this stage and the number of nodes of the solution enumeration tree that CPLEX had
to expand, respectively.

Instance Red. F Red A Gap Time Nodes

1 37.15% 1.84% 0.00% 1.47 0
26 16.95% 0.88% 0.00% 1.49 0
51 71.40% 3.65% 0.00% 2.32 0
76 76.60% 4.13% 0.00% 4.19 0
101 68.05% 3.50% 0.00% 1.96 0
6 99.75% 99.78% 25.00% 3600.62 908
31 99.90% 99.88% 25.00% 3601.69 682
56 99.95% 98.84% 25.00% 3609.75 92
81 98.65% 96.86% 25.00% 3603.38 208
106 99.80% 99.63% 25.00% 3633.61 86
11 99.20% 99.99% 50.00% 3601.81 1500
36 99.60% 100.00% 50.00% 3601.86 1405
61 97.75% 99.98% 50.00% 3608.69 1204
86 99.65% 100.00% 50.00% 3637.28 79
111 99.80% 100.00% 50.00% 3645.86 151
16 97.65% 99.99% 75.00% 3600.88 2311
41 97.10% 99.98% 75.00% 3600.77 3181
66 99.15% 100.00% 75.00% 3600.75 482
91 99.35% 100.00% 75.00% 3837.41 21
116 99.30% 100.00% 75.00% 3603.45 35
21 99.05% 100.00% 100.00% 3600.51 2137
46 99.15% 100.00% 100.00% 3602.80 1072
71 98.30% 99.99% 100.00% 3601.15 741
96 98.35% 99.99% 100.00% 3767.36 34
121 99.25% 100.00% 100.00% 3601.56 56

Average 90.03% 80.35% 12.35% 2902.90 655.40
Standard Deviation 21.20% 39.59% 13.89% 1481.25 872.63
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(continued...)
Inst Red. F Red. U Gap Time Nodes Inst Red. F Red. U Gap Time Nodes

106 99.85% 53.19% 0.00 73.65 0 85 98.70% 98.43% 6.79 35976.86 0
111 99.85% 53.37% 0.00 23.87 0 39 99.65% 100.00% 7.00 4040.56 0
112 0.00% 0.00% 0.00 5.23 0 45 97.15% 99.99% 7.00 4326.06 2
114 0.00% 0.00% 0.00 4.46 0 50 99.20% 100.00% 7.00 7720.61 2
117 0.00% 0.00% 0.00 5.43 0 40 99.65% 100.00% 7.00 4745.19 3
121 99.30% 53.25% 0.00 122.89 0 84 98.70% 98.43% 7.00 16122.19 3
122 0.00% 0.00% 0.00 3.56 0 125 99.30% 100.00% 7.00 4939.96 3
123 99.30% 100.00% 0.00 867.24 0 24 99.25% 100.00% 7.00 4631.05 3
124 0.00% 0.00% 0.00 2.97 0 74 98.35% 100.00% 7.33 7016.72 0
66 99.20% 59.97% 1.00 5008.28 4 65 97.80% 99.99% 7.46 4427.36 0
71 98.35% 53.36% 1.00 3741.13 6 90 99.70% 100.00% 7.86 15364.48 0
86 99.70% 54.61% 1.00 5650.63 4 69 99.20% 100.00% 7.89 23599.10 0
96 98.40% 52.83% 1.00 3883.89 8 115 99.70% 100.00% 7.89 7055.09 0
116 99.35% 54.07% 1.00 4239.25 3 89 99.70% 100.00% 7.98 12724.39 0
79 82.75% 50.97% 1.00 3920.06 176 119 99.35% 100.00% 8.54 7115.17 0
17 97.85% 82.29% 1.00 3921.63 7 75 98.35% 100.00% 8.83 13277.99 0
42 97.15% 76.73% 1.00 4360.84 5 70 99.20% 100.00% 9.00 5565.29 2
47 99.15% 93.29% 1.00 4954.73 2 100 98.40% 100.00% 9.77 14770.70 0
72 98.35% 89.38% 1.00 6093.50 2 120 99.35% 100.00% 10.00 4080.71 0
97 98.40% 91.87% 1.00 4972.28 3 Average 86.34% 68.06% 2.91 4939.38 8.84
57 100.00% 99.42% 1.67 14580.87 0 StdDev 28.06% 38.45% 3.10 6308.06 57.50
12 99.90% 99.87% 1.94 3805.79 0

Table D.4: CPLEX results the maximisation of the total covering, in ascending order of
optimality gaps. Each row represents one of the proposed instances. The first column identifies
the instance, as described on Table 4.2. The second and third columns show the sizes of sets
F and U , respectively, after performing safe reductions (CPLEX’s presolve). The next three
columns show the optimality gap, calculated using Equation 4.5, the running time to solve this
stage and the number of nodes of the solution enumeration tree that CPLEX had to expand,
respectively.

Inst Red. F Red. U Gap Time Nodes Inst Red. F Red. U Gap Time Nodes

1 76.80% 1.36% 0.00% 0.85 0 21 99.15% 50.00% 3.10% 3600.06 10925
2 76.80% 1.36% 0.00% 0.87 0 23 99.20% 99.96% 3.11% 3600.63 3926
3 79.05% 1.59% 0.00% 0.95 0 25 99.20% 100.00% 3.11% 3600.08 3249
4 83.25% 2.31% 0.00% 1.03 0 46 99.15% 50.00% 3.11% 3601.47 5601
5 81.35% 1.94% 0.00% 0.91 0 47 99.10% 79.06% 3.11% 3600.35 2315
26 78.35% 1.61% 0.00% 0.96 0 24 99.20% 100.00% 3.12% 3600.07 3351
27 78.35% 1.61% 0.00% 0.94 0 111 99.80% 50.00% 3.13% 3600.17 4954
28 81.70% 0.00% 0.96 0 113 99.80% 50.00% 3.13% 3600.44 4965
29 82.85% 2.62% 0.00% 0.92 0 67 98.85% 85.85% 3.14% 3602.48 455
30 82.85% 2.46% 0.00% 0.93 0 41 97.10% 49.99% 3.55% 3600.31 12118
51 32.95% 1.50% 0.00% 3.33 6 16 97.75% 50.00% 3.56% 3600.05 12177
52 32.95% 1.50% 0.00% 5.19 6 19 97.80% 99.99% 3.56% 3600.24 4412
53 40.35% 1.87% 0.00% 3.27 17 42 97.10% 62.96% 3.56% 3600.23 7460
55 83.40% 2.90% 0.00% 6.84 123 17 97.80% 66.65% 3.57% 3600.14 9023
76 39.50% 1.75% 0.00% 4.47 14 18 97.80% 93.05% 3.57% 3600.50 4836
77 39.50% 1.75% 0.00% 5.59 14 20 97.80% 100.00% 3.57% 3600.41 4437
78 42.90% 1.94% 0.00% 5.31 25 43 97.10% 87.81% 3.58% 3600.59 958
91 0.00% 0.00% 0.00% 2.66 0 44 97.10% 99.92% 3.64% 3600.33 1937
92 0.00% 0.00% 0.00% 2.11 0 48 99.15% 93.84% 3.98% 3600.56 1694
93 0.00% 0.00% 0.00% 2.36 0 49 99.15% 100.00% 3.98% 3602.36 1777
94 0.00% 0.00% 0.00% 2.31 0 50 99.15% 100.00% 3.98% 3605.07 1603
95 0.00% 0.00% 0.00% 1.13 0 66 99.15% 50.00% 4.14% 3600.38 5699
105 81.40% 3.01% 0.00% 10.61 310 69 99.15% 100.00% 4.15% 3601.16 884
112 0.00% 0.00% 0.00% 2.33 0 70 99.15% 100.00% 4.15% 3602.75 917
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(continued...)
Inst Red. F Red. U Gap Time Nodes Inst Red. F Red. U Gap Time Nodes

114 0.00% 0.00% 0.00% 4.26 0 68 99.15% 98.75% 4.16% 3605.92 531
117 0.00% 0.00% 0.00% 2.36 0 45 97.10% 99.97% 4.21% 3607.24 814
122 0.00% 0.00% 0.00% 2.22 0 72 98.30% 73.27% 4.80% 3600.21 2754
124 0.00% 0.00% 0.00% 2.14 0 74 98.30% 100.00% 4.80% 3600.56 628
54 83.40% 3.10% 0.01% 18.36 142 86 99.65% 50.00% 4.80% 3600.05 1491
56 61.95% 46.22% 0.01% 1797.54 1960 87 99.65% 50.00% 4.80% 3600.38 1561
79 43.85% 1.96% 0.01% 7.57 123 88 99.65% 91.42% 4.80% 3604.94 152
80 82.70% 3.17% 0.01% 7.87 22 89 99.65% 99.96% 4.80% 3611.02 47
102 78.85% 2.00% 0.01% 7.01 99 90 99.65% 100.00% 4.80% 3656.86 2
103 81.05% 2.27% 0.01% 7.58 248 71 98.30% 50.00% 5.12% 3600.02 10096
104 80.65% 2.22% 0.01% 8.86 69 73 98.30% 99.35% 5.13% 3600.35 3776
6 99.85% 49.89% 0.02% 3600.24 9595 75 98.30% 100.00% 5.13% 3600.15 3201

125 99.25% 100.00% 0.02% 3600.44 5852 61 97.75% 49.99% 5.35% 3600.53 6750
121 82.75% 52.12% 0.04% 3600.19 11202 36 99.60% 50.00% 5.78% 3600.07 9310
33 99.95% 48.48% 0.08% 3600.26 11274 37 99.60% 50.00% 5.78% 3600.62 9271
57 99.95% 49.42% 0.24% 3600.06 1987 81 98.65% 48.43% 5.78% 3601.55 1048
59 99.95% 49.42% 0.24% 3600.32 2835 82 98.65% 48.43% 5.78% 3601.27 1563
60 99.95% 49.42% 0.24% 3600.90 2563 85 98.65% 97.38% 5.78% 3613.83 114
58 99.95% 49.42% 0.25% 3600.34 1888 38 99.60% 98.11% 5.79% 3601.36 3531
8 99.95% 49.09% 0.31% 3600.34 8592 39 99.60% 99.98% 5.79% 3600.12 2901
7 99.90% 49.89% 0.45% 3600.04 6862 40 99.60% 100.00% 5.79% 3600.37 3435
12 99.85% 50.00% 0.59% 3600.42 13290 84 98.65% 92.64% 5.79% 3617.75 62
123 98.85% 100.00% 1.14% 3600.75 3413 63 97.75% 84.51% 5.85% 3602.58 2891
119 99.30% 100.00% 1.60% 3602.58 613 65 97.75% 99.94% 5.85% 3600.24 2221
116 99.30% 50.00% 1.61% 3603.45 502 64 97.75% 99.92% 6.39% 3602.39 168
118 99.30% 99.77% 1.61% 3602.41 290 11 99.30% 50.00% 7.23% 3600.32 8283
120 99.30% 100.00% 1.61% 3607.88 241 13 99.35% 83.98% 7.24% 3600.08 3435
115 99.65% 100.00% 2.12% 3604.25 641 14 99.35% 99.96% 7.24% 3600.33 2727
22 99.00% 73.04% 2.62% 3600.14 9441 15 99.35% 99.96% 7.24% 3600.84 2058
110 99.80% 95.60% 3.01% 3601.12 557 62 99.60% 50.00% 8.08% 3603.56 1932
96 98.35% 50.00% 3.06% 3601.67 2468 83 99.90% 49.97% 8.09% 3600.14 2205
97 98.35% 76.20% 3.06% 3601.22 825 9 99.90% 96.70% 9.81% 3602.18 3849
98 98.35% 99.95% 3.06% 3601.85 464 10 99.90% 96.76% 9.84% 3600.59 2011
99 98.35% 100.00% 3.06% 3600.13 76 31 99.90% 49.94% 11.89% 3600.05 9094
100 98.35% 100.00% 3.06% 3600.51 280 32 99.90% 49.94% 11.89% 3601.54 8920
106 99.80% 49.82% 3.09% 3601.04 1049 34 99.90% 97.38% 11.91% 3600.31 3734
107 99.80% 49.82% 3.09% 3600.98 607 35 99.90% 97.29% 11.92% 3600.03 2888
108 99.80% 49.82% 3.09% 3603.08 675 Average 84.67% 55.66% 3.00% 2580.31 2648.19
109 99.80% 95.66% 3.09% 3604.13 538 StdDev 29.19% 39.27% 2.99% 1621.13 3400.93
101 78.85% 2.00% 0.01% 3.96 99

D.2 Chapter 5

The following tables complement the material presented on Chapter 5. The algorithms are

identified as detailed on Table 7.1 and Table 7.2.

Table D.5 and Table D.6 detail the information summarized with averages on Table 7.6,

including the results for each instance, as indexed on Table 4.2. They also detail, instance by

instance, the results summarized with total values on Table 7.7, and graphically on Figure 7.1-

Figure 7.5.
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Table D.5: Metaheuristics’s Results. Each row represents the results obtained with each of the proposed heuristics for the minimisation
of the number of selected features. The first column identifies the instance as described on Table 4.2. The second shows the gaps,
calculated with Equation 4.5, obtained using the exact approach. The next three the gaps obtained by the proposed heuristic using
each of the proposed randomization methods: Algorithm 16, Algorithm 16 or Algorithm 15 chosen at random and only Algorithm 15.
The last two columns also show results for the two most successful approaches (the last two) combined with Tabu Search. Bold values
highlight the best of the five proposed heuristics. The values in italics improve the exact methods’s best effort minimizing the number
of selected features. The values marked with * improve the exact method’s best effort also in maximising β. The values marked with
** improve the exact method’s best effort for all considered objective functions.

Heuristic

Instance CPLEX MH1 MH2 MH3 MH4 MH5

avg sd avg sd avg sd avg sd avg sd
1 0.00% 1.26% 0.28% 1.00% 0.15% 1.46% 0.32% 1.15% 0.20% 1.36% 0.23%
2 0.00% 1.35% 0.37% 1.11% 0.18% 1.31% 0.22% 1.15% 0.23% 1.27% 0.22%
3 0.00% 1.29% 0.40% 1.09% 0.29% 1.35% 0.25% 1.09% 0.37% 1.53% 0.23%
4 0.00% 1.34% 0.18% 1.31% 0.16% 1.93% 0.25% 1.38% 0.22% 1.95% 0.19%
5 0.00% 1.20% 0.23% 1.15% 0.21% 1.27% 0.24% 1.16% 0.14% 1.33% 0.26%
26 0.00% 0.99% 0.16% 1.06% 0.14% 1.30% 0.18% 0.99% 0.21% 1.44% 0.22%
27 0.00% 0.98% 0.11% 1.08% 0.17% 1.35% 0.13% 0.92% 0.19% 1.32% 0.28%
28 0.00% 1.51% 0.23% 1.51% 0.28% 1.98% 0.28% 1.42% 0.12% 1.80% 0.19%
29 0.00% 0.89% 0.20% 0.99% 0.16% 1.34% 0.26% 1.10% 0.17% 1.42% 0.13%
30 0.00% 0.89% 0.14% 0.91% 0.25% 1.29% 0.22% 0.91% 0.13% 1.32% 0.26%
51 0.00% 2.14% 0.44% 1.91% 0.29% 2.83% 0.42% 1.87% 0.23% 2.91% 0.30%
52 0.00% 2.12% 0.41% 2.07% 0.28% 2.76% 0.35% 1.91% 0.31% 2.84% 0.32%
53 0.00% 2.48% 0.29% 1.89% 0.19% 2.86% 0.25% 1.92% 0.27% 2.97% 0.29%
54 0.00% 1.89% 0.28% 1.76% 0.27% 2.61% 0.48% 1.99% 0.29% 2.57% 0.34%
55 0.00% 1.97% 0.35% 1.92% 0.36% 2.75% 0.46% 2.01% 0.34% 3.07% 0.31%
76 0.00% 2.00% 0.50% 1.86% 0.26% 2.46% 0.38% 1.85% 0.33% 2.27% 0.48%
77 0.00% 1.97% 0.47% 1.94% 0.24% 2.49% 0.39% 1.85% 0.21% 2.36% 0.44%
78 0.00% 2.04% 0.47% 1.74% 0.39% 2.46% 0.42% 2.07% 0.38% 2.43% 0.44%
79 0.00% 1.78% 0.38% 1.96% 0.31% 2.30% 0.27% 1.78% 0.25% 2.16% 0.35%
80 0.00% 2.07% 0.50% 1.91% 0.41% 2.21% 0.48% 1.75% 0.23% 2.35% 0.48%
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(continued...)
Heuristic

Instance CPLEX MH1 MH2 MH3 MH4 MH5

avg sd avg sd avg sd avg sd avg sd
101 0.00% 1.67% 0.18% 1.37% 0.26% 1.87% 0.25% 1.24% 0.29% 1.82% 0.27%
102 0.00% 1.69% 0.24% 1.23% 0.20% 1.89% 0.16% 1.23% 0.22% 1.87% 0.26%
103 0.00% 1.63% 0.31% 1.48% 0.24% 2.33% 0.35% 1.52% 0.34% 2.21% 0.24%
104 0.00% 1.61% 0.22% 1.32% 0.22% 1.90% 0.27% 1.26% 0.15% 1.85% 0.31%
105 0.00% 2.03% 0.40% 1.39% 0.21% 2.34% 0.43% 1.51% 0.30% 2.31% 0.30%
22 2.81% 4.07% 0.12% 3.60% 0.15% 3.51% 0.16% 3.53% 0.09% 3.60% 0.23%
41 3.23% 5.27% 0.34% 4.51% 0.18% 4.70% 0.24% 4.52% 0.23% 4.64% 0.26%
42 3.23% 5.34% 0.23% 4.81% 0.27% 4.79% 0.17% 4.60% 0.24% 4.74% 0.27%
43 3.23% 5.13% 0.26% 4.62% 0.17% 4.75% 0.31% 4.58% 0.20% 4.64% 0.21%
47 3.34% 4.35% 0.09% 4.01% 0.22% 3.98% 0.17% 3.98% 0.20% 4.05% 0.14%
44 3.54% 5.22% 0.34% 4.68% 0.24% 4.75% 0.26% 4.65% 0.41% 4.75% 0.22%
45 3.75% 5.40% 0.23% 4.68% 0.23% 4.74% 0.31% 4.69% 0.15% 4.84% 0.26%
46 3.88% 5.17% 0.19% 4.62% 0.17% 4.71% 0.25% 4.75% 0.24% 4.73% 0.20%
16 3.92% 5.31% 0.24% 4.96% 0.17% 4.84% 0.23% 5.05% 0.15% 4.87% 0.21%
17 3.92% 5.31% 0.18% 4.89% 0.19% 5.02% 0.21% 4.98% 0.18% 4.89% 0.21%
18 3.92% 5.33% 0.19% 4.91% 0.20% 4.91% 0.23% 5.00% 0.20% 4.89% 0.22%
19 3.92% 5.39% 0.21% 4.86% 0.17% 5.04% 0.21% 4.87% 0.16% 4.94% 0.19%
20 3.92% 5.24% 0.14% 4.76% 0.13% 4.91% 0.20% 4.83% 0.14% 4.77% 0.17%
21 3.97% 5.76% 0.19% 5.01% 0.24% 5.19% 0.26% 5.06% 0.22% 5.12% 0.21%
23 3.97% 5.82% 0.26% 5.05% 0.21% 5.08% 0.19% 5.27% 0.31% 5.07% 0.23%
24 3.97% 5.70% 0.16% 5.23% 0.20% 5.15% 0.20% 5.04% 0.26% 5.11% 0.23%
25 3.97% 5.77% 0.19% 5.12% 0.17% 4.95% 0.28% 5.17% 0.21% 5.04% 0.17%
66 4.34% 5.09% 0.19% 4.66% 0.22% 4.88% 0.21% 4.66% 0.25% 4.81% 0.13%
67 4.34% 5.12% 0.13% 4.82% 0.18% 4.93% 0.17% 4.56% 0.16% 4.87% 0.14%
68 4.34% 5.20% 0.23% 4.73% 0.21% 4.74% 0.18% 4.70% 0.19% 4.86% 0.16%
69 4.34% 5.19% 0.17% 4.70% 0.23% 4.81% 0.19% 4.74% 0.15% 4.77% 0.16%
70 4.34% 5.26% 0.20% 4.73% 0.22% 4.81% 0.15% 4.72% 0.25% 4.76% 0.19%
48 4.56% 5.17% 0.22% 4.71% 0.21% 4.76% 0.25% 4.67% 0.17% 4.76% 0.16%
49 4.56% 5.09% 0.18% 4.72% 0.25% 4.62% 0.16% 4.75% 0.20% 4.58% 0.27%
50 4.56% 5.16% 0.15% 4.65% 0.26% 4.81% 0.19% 4.65% 0.16% 4.64% 0.16%
61 5.82% 8.05% 0.20% 7.30% 0.29% 7.40% 0.31% 7.52% 0.24% 7.40% 0.23%
71 5.93% 6.99% 0.18% 6.25% 0.23% 6.32% 0.26% 6.40% 0.16% 6.38% 0.20%
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(continued...)

Heuristic

Instance CPLEX MH1 MH2 MH3 MH4 MH5

avg sd avg sd avg sd avg sd avg sd
73 5.93% 7.06% 0.13% 6.25% 0.16% 6.49% 0.24% 6.38% 0.28% 6.38% 0.20%
75 5.93% 6.85% 0.12% 6.33% 0.26% 6.24% 0.23% 6.48% 0.27% 6.41% 0.25%
36 6.33% 8.21% 0.38% 7.35% 0.35% 7.56% 0.32% 7.65% 0.31% 7.56% 0.19%
37 6.33% 8.31% 0.36% 7.61% 0.24% 7.59% 0.38% 7.54% 0.31% 7.77% 0.28%
38 6.33% 8.21% 0.37% 7.44% 0.26% 7.59% 0.28% 7.41% 0.30% 7.71% 0.29%
39 6.33% 8.37% 0.39% 7.45% 0.32% 7.74% 0.21% 7.49% 0.19% 7.47% 0.32%
40 6.33% 8.20% 0.39% 7.55% 0.30% 7.56% 0.26% 7.47% 0.29% 7.64% 0.39%
63 6.33% 7.88% 0.23% 7.45% 0.16% 7.39% 0.29% 7.57% 0.25% 7.49% 0.22%
65 6.33% 7.84% 0.35% 7.37% 0.35% 7.41% 0.19% 7.42% 0.27% 7.43% 0.26%
72 6.49% 7.00% 0.12% **6.30% 0.19% **6.45% 0.20% **6.22% 0.31% **6.34% 0.20%
74 6.49% 7.06% 0.09% **6.30% 0.16% **6.26% 0.18% **6.21% 0.25% **6.31% 0.14%
64 6.53% 7.90% 0.25% 7.47% 0.21% 7.33% 0.21% 7.34% 0.25% 7.47% 0.18%
11 7.96% 10.17% 0.26% 9.20% 0.37% 9.38% 0.28% 9.16% 0.49% 9.22% 0.43%
13 7.96% 9.89% 0.28% 9.38% 0.21% 9.20% 0.21% 9.23% 0.31% 9.63% 0.25%
14 7.96% 9.98% 0.43% 9.16% 0.44% 9.50% 0.23% 9.22% 0.37% 9.44% 0.41%
15 7.96% 10.03% 0.35% 9.11% 0.33% 9.42% 0.39% 9.48% 0.18% 9.29% 0.31%
96 9.05% 9.34% 0.13% *8.76% 0.31% *8.78% 0.27% *8.75% 0.25% *8.86% 0.25%
97 9.05% 9.35% 0.17% 8.71% 0.28% 8.70% 0.16% 8.77% 0.27% 8.79% 0.19%
98 9.05% 9.37% 0.21% 8.81% 0.17% 8.67% 0.17% 8.74% 0.30% 8.70% 0.35%
99 9.05% 9.37% 0.24% 8.83% 0.16% **8.80% 0.19% 8.63% 0.16% **8.81% 0.22%
100 9.05% 9.41% 0.24% **8.83% 0.29% **8.85% 0.17% **8.83% 0.22% **8.83% 0.17%
62 9.11% 9.37% 0.27% **8.93% 0.24% **9.05% 0.30% **8.84% 0.27% **8.97% 0.31%
116 9.84% 11.64% 0.26% 10.70% 0.38% 11.05% 0.30% 10.81% 0.24% 11.09% 0.40%
118 9.84% 11.49% 0.19% 10.77% 0.34% 11.05% 0.21% 10.91% 0.34% 10.91% 0.36%
119 9.84% 11.36% 0.30% 10.83% 0.30% 10.89% 0.22% 10.72% 0.39% 11.04% 0.22%
120 9.84% 11.38% 0.28% 10.77% 0.39% 10.97% 0.30% 10.78% 0.16% 11.07% 0.15%
86 13.61% 13.62% 0.28% *13.23% 0.42% *13.36% 0.36% *13.19% 0.28% *13.15% 0.29%
87 13.61% **13.52% 0.33% **13.31% 0.36% **13.31% 0.25% **13.13% 0.34% **13.50% 0.24%
88 13.61% 13.64% 0.19% **13.19% 0.25% **13.37% 0.38% **13.12% 0.32% **13.31% 0.24%
89 13.61% 13.67% 0.30% **13.25% 0.38% **13.36% 0.32% **13.37% 0.19% **13.25% 0.40%
90 13.61% 13.74% 0.20% 13.18% 0.22% **13.47% 0.28% **13.10% 0.19% **13.33% 0.26%
115 14.22% 14.46% 0.31% *13.95% 0.33% *14.05% 0.43% *13.90% 0.32% 14.23% 0.32%156
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(continued...)
Heuristic

Instance CPLEX MH1 MH2 MH3 MH4 MH5

avg sd avg sd avg sd avg sd avg sd
81 17.00% *15.74% 0.32% *14.98% 0.41% *15.30% 0.29% *15.34% 0.34% *15.42% 0.53%
82 17.00% **15.67% 0.29% **14.73% 0.42% **15.30% 0.30% **14.96% 0.38% **15.16% 0.33%
84 17.00% *15.52% 0.37% *14.80% 0.52% *15.25% 0.56% *15.05% 0.57% *15.10% 0.43%
85 17.00% 15.70% 0.36% **14.98% 0.45% 15.22% 0.41% 14.98% 0.54% 15.16% 0.50%
121 17.67% 12.41% 0.18% 11.95% 0.29% 11.89% 0.11% 11.83% 0.23% 11.93% 0.33%
123 17.67% 12.37% 0.22% 11.99% 0.16% 12.00% 0.19% 11.87% 0.23% 11.81% 0.22%
125 17.67% 12.36% 0.19% 11.82% 0.19% 11.89% 0.25% 11.75% 0.19% 11.86% 0.23%
7 19.85% *19.45% 0.45% *18.75% 0.62% *18.99% 0.50% *18.65% 0.32% *18.84% 0.38%
9 19.85% *19.45% 0.27% *18.75% 0.46% 18.56% 0.38% *19.01% 0.42% *18.80% 0.27%
10 19.85% **19.35% 0.47% **18.80% 0.29% **18.99% 0.44% **18.65% 0.43% **18.97% 0.34%
31 21.69% **20.02% 0.27% **19.22% 0.58% **19.80% 0.26% **19.52% 0.44% **19.58% 0.66%
32 21.69% **20.23% 0.47% **19.14% 0.29% **19.58% 0.33% **19.54% 0.51% **19.40% 0.46%
34 21.69% *20.06% 0.60% 19.52% 0.42% *19.72% 0.64% *19.40% 0.50% *19.60% 0.57%
35 21.69% **20.25% 0.50% **19.16% 0.65% **19.46% 0.36% **19.36% 0.27% **19.68% 0.72%
6 22.66% **19.37% 0.14% **18.94% 0.33% **19.01% 0.50% **19.13% 0.41% **18.88% 0.40%
12 25.94% **24.46% 0.47% **23.65% 0.41% **23.75% 0.39% **24.15% 0.23% **23.73% 0.31%
83 26.83% **24.44% 0.38% **23.46% 0.35% **24.04% 0.28% **23.61% 0.24% **24.03% 0.42%
111 27.13% *25.93% 0.34% *25.19% 0.35% *25.46% 0.31% *25.06% 0.29% *25.35% 0.39%
113 27.13% *25.81% 0.29% *25.16% 0.28% *25.23% 0.33% *25.12% 0.38% *25.52% 0.37%
106 27.85% **25.98% 0.43% **25.45% 0.63% **25.95% 0.29% **25.50% 0.33% **25.82% 0.40%
107 27.85% *25.85% 0.53% *25.67% 0.44% *26.01% 0.46% *25.65% 0.30% *25.78% 0.38%
108 27.85% *25.62% 0.58% *25.58% 0.72% *25.48% 0.62% *25.44% 0.47% *25.87% 0.17%
109 27.85% 25.88% 0.44% 25.37% 0.52% 25.75% 0.50% 25.57% 0.44% 25.99% 0.42%
110 27.98% 25.55% 0.33% 25.52% 0.42% *26.05% 0.51% 25.43% 0.50% 25.71% 0.29%
8 38.61% **35.94% 0.27% **35.28% 0.35% **35.48% 0.33% **35.03% 0.46% **35.25% 0.39%
33 39.57% **36.04% 0.33% **35.25% 0.48% **35.64% 0.48% **35.23% 0.41% **35.71% 0.52%
57 41.52% *36.78% 0.33% *36.36% 0.41% *36.72% 0.23% *36.45% 0.17% *36.56% 0.28%
58 41.52% *36.47% 0.36% *36.30% 0.38% *36.54% 0.40% *36.43% 0.34% *36.30% 0.30%
59 41.52% *36.65% 0.45% *36.63% 0.49% *36.72% 0.32% *36.45% 0.47% *36.67% 0.33%
60 41.52% *36.43% 0.44% *36.23% 0.35% *36.56% 0.42% *36.18% 0.45% *36.47% 0.28%
56 43.87% **36.52% 0.32% **36.17% 0.31% **36.57% 0.26% **36.39% 0.32% **36.55% 0.38%
122 48.88% 12.47% 0.13% 11.98% 0.32% 12.03% 0.31% 11.83% 0.30% 11.92% 0.24%
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(continued...)

Heuristic

Instance CPLEX MH1 MH2 MH3 MH4 MH5

avg sd avg sd avg sd avg sd avg sd
124 48.88% 12.53% 0.25% 11.82% 0.21% 11.90% 0.31% 12.01% 0.21% 12.05% 0.20%
117 48.91% 11.31% 0.25% 10.84% 0.21% 10.88% 0.29% 10.74% 0.27% 10.99% 0.28%
91 52.98% 11.85% 0.25% 11.06% 0.27% 11.22% 0.18% 11.05% 0.34% 11.33% 0.19%
92 52.98% 11.76% 0.20% 11.16% 0.19% 11.23% 0.17% 11.30% 0.21% 11.32% 0.20%
93 52.98% 11.72% 0.18% 11.21% 0.23% 11.22% 0.14% 11.29% 0.17% 11.17% 0.24%
94 52.98% 11.68% 0.27% 11.13% 0.25% 11.39% 0.31% 11.02% 0.20% 11.26% 0.28%
95 52.98% 11.78% 0.23% 11.12% 0.34% 11.31% 0.12% 11.12% 0.25% 11.12% 0.32%
112 79.38% 25.77% 0.30% 25.24% 0.15% 25.51% 0.24% 25.15% 0.35% 25.26% 0.36%
114 79.38% 25.77% 0.38% 25.22% 0.33% 25.25% 0.42% 25.07% 0.33% 25.34% 0.38%

Average 14.30% 11.15% 0.28% 10.66% 0.29% 10.87% 0.29% 10.67% 0.28% 10.86% 0.29%
Standard Deviation 16.97% 9.34% 0.11% 9.28% 0.12% 9.27% 0.11% 9.29% 0.10% 9.25% 0.11%
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Table D.6: Metaheuristics’s Times. Each row represents the running times each of the proposed
heuristics. The first column identifies the instance as described on Table 4.2. The next three
the gaps, calculated with Equation 4.5, obtained by the proposed heuristic using each of the
proposed randomization methods: Algorithm 16, Algorithm 16 or Algorithm 15 chosen at
random and only Algorithm 15. The last two columns also show results for the two most
successful approaches (the last two) combined with Tabu Search.

Heuristic

Instance MH1 MH2 MH3 MH4 MH5

avg sd avg sd avg sd avg sd avg sd

1 11.96 4.51 10.59 2.57 10.03 2.16 10.76 3.63 11.14 1.98
2 9.55 2.37 10.28 2.47 10.66 2.89 9.83 1.19 9.51 1.57
3 10.40 3.14 10.31 2.12 10.72 1.50 9.97 1.49 9.61 1.42
4 9.58 2.50 11.88 2.12 9.68 1.42 9.91 2.01 9.64 2.13
5 10.08 2.60 10.02 1.50 12.75 3.65 10.33 1.19 10.64 1.38
6 6.90 2.38 10.60 2.66 11.66 2.16 9.82 2.98 11.11 3.26
7 7.82 2.39 9.11 2.52 10.20 1.82 10.20 3.43 13.03 3.85
8 4.26 1.08 7.03 1.62 8.71 2.97 8.11 1.84 9.08 1.45
9 5.44 1.06 9.34 3.58 13.22 2.85 10.94 2.76 12.84 3.85
10 6.82 1.80 10.51 2.74 10.62 2.66 10.20 2.75 11.21 2.16
11 6.73 1.24 11.28 2.78 12.30 3.08 12.17 4.45 13.55 4.38
12 4.41 1.04 7.18 1.35 9.13 0.95 6.97 1.50 10.47 4.26
13 8.46 2.01 12.31 4.09 13.71 2.53 15.27 3.24 13.03 4.28
14 6.58 1.44 12.41 3.14 12.51 2.10 12.79 1.97 13.37 5.14
15 8.38 2.33 15.17 3.40 12.68 3.31 12.67 3.86 13.59 4.36
16 4.89 0.31 11.71 3.45 12.41 3.69 10.42 5.44 13.26 3.42
17 4.72 0.45 11.24 2.07 11.14 3.29 9.94 2.29 12.28 2.39
18 5.05 0.76 9.56 0.98 12.07 3.36 11.62 5.89 12.62 4.12
19 4.84 0.62 9.85 2.63 9.33 2.01 12.38 3.77 10.83 2.50
20 4.89 0.56 13.00 4.01 12.84 3.39 10.29 2.09 12.63 2.15
21 2.50 0.27 8.31 1.97 8.75 2.34 7.81 1.95 8.33 1.94
22 2.54 0.11 7.80 1.92 8.66 2.64 9.10 1.87 9.52 3.14
23 2.66 0.58 7.99 1.45 10.61 3.60 7.62 1.49 8.60 2.33
24 2.54 0.26 6.73 1.64 7.47 1.27 7.37 2.46 9.71 2.08
25 2.41 0.28 7.18 1.41 8.49 1.74 8.38 2.17 9.69 1.46
26 11.73 3.17 11.12 1.86 10.11 1.85 11.47 2.43 10.06 2.18
27 13.32 3.41 10.21 1.13 9.91 1.00 11.17 2.81 10.10 1.43
28 11.95 3.70 14.03 6.65 14.25 5.47 11.42 1.46 12.28 1.69
29 12.71 3.74 11.78 3.24 10.11 1.84 10.70 2.05 10.37 2.10
30 12.66 1.97 11.28 2.55 11.46 1.87 11.87 3.04 10.03 1.95
31 7.95 2.26 10.06 2.83 11.74 2.53 11.67 4.35 13.82 3.16
32 7.26 2.70 12.52 3.47 13.19 3.53 10.60 2.06 14.38 3.10
33 5.07 1.69 8.08 1.77 9.30 2.73 7.16 1.61 10.46 3.01
34 7.17 1.76 10.17 1.68 13.56 5.01 12.32 4.71 14.21 5.41
35 8.33 3.34 11.88 1.79 14.00 3.42 10.52 1.17 11.77 3.09
36 8.64 2.31 15.84 5.20 14.19 2.10 15.08 3.40 15.29 3.54
37 7.77 2.39 14.50 4.28 13.98 3.09 13.04 3.19 14.31 3.31
38 7.54 1.87 17.41 5.68 15.04 4.21 16.51 5.81 14.34 4.04
39 7.19 1.21 16.38 5.29 14.65 3.79 14.35 3.44 15.28 4.01
40 8.24 1.19 13.69 3.73 19.03 8.98 15.22 2.81 17.35 4.48
41 5.71 1.08 12.74 3.23 12.87 2.17 13.59 3.44 13.28 3.98
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(continued...)

Heuristic

Instance MH1 MH2 MH3 MH4 MH5

avg sd avg sd avg sd avg sd avg sd

42 4.95 0.50 10.89 1.71 11.94 1.94 12.00 2.68 14.28 4.24
43 5.28 0.68 12.00 3.41 13.48 3.10 12.19 1.85 10.86 1.42
44 5.04 0.74 11.29 2.22 12.86 2.96 11.62 3.84 12.38 2.33
45 4.95 0.61 11.10 2.05 12.92 3.31 13.66 6.79 11.75 2.28
46 2.62 0.19 7.73 3.03 10.09 4.75 9.09 3.57 8.19 2.69
47 2.89 0.27 8.10 2.37 8.54 2.01 9.47 2.23 7.57 1.17
48 2.79 0.29 7.70 1.86 7.78 1.81 8.69 1.54 7.97 1.68
49 2.73 0.27 8.20 1.82 8.96 2.04 8.07 1.59 8.41 0.99
50 2.78 0.20 7.85 2.21 8.26 2.08 8.45 1.63 9.08 2.42
51 13.79 4.80 13.84 1.65 12.74 2.38 15.54 2.95 12.84 1.74
52 13.36 3.02 14.86 3.47 12.39 2.05 14.11 3.43 11.91 1.43
53 11.32 2.09 13.14 3.42 12.09 2.30 13.30 3.53 11.90 3.33
54 14.25 4.39 12.57 1.59 13.96 2.82 11.87 3.22 13.32 1.71
55 13.71 3.00 13.91 3.35 11.06 2.05 14.15 3.87 12.41 2.52
56 4.05 1.35 9.33 4.19 8.75 2.66 6.94 1.47 9.08 2.47
57 3.70 0.82 7.57 2.96 9.70 3.62 7.18 2.27 8.54 1.42
58 3.98 1.23 7.26 2.48 9.34 3.75 7.94 2.06 9.51 3.38
59 4.14 0.80 6.85 2.21 7.63 1.75 6.68 1.94 8.57 1.81
60 5.50 2.56 7.02 1.81 8.65 1.37 7.60 2.96 9.24 1.80
61 7.57 1.26 15.14 5.03 14.89 3.29 14.18 2.51 16.38 4.76
62 6.36 1.21 14.56 3.32 12.71 2.87 14.45 2.82 12.60 1.84
63 7.45 0.99 14.24 3.01 14.30 2.86 13.49 1.85 15.52 2.94
64 7.62 1.14 15.07 5.74 20.38 5.01 18.42 6.92 14.76 1.78
65 7.13 0.76 19.81 9.97 15.38 2.74 15.13 3.92 17.22 4.45
66 5.39 0.53 14.21 3.60 13.18 5.25 14.07 3.94 12.59 2.35
67 5.42 0.47 12.14 3.55 11.41 2.23 12.99 3.01 13.63 5.11
68 5.25 0.50 11.27 3.35 11.79 1.90 11.06 2.92 13.27 1.76
69 5.53 0.49 12.25 2.20 11.58 1.35 11.38 1.43 13.12 3.41
70 5.04 0.44 10.91 1.69 12.66 2.03 12.64 3.03 12.17 2.14
71 2.75 0.19 8.55 2.08 9.24 2.33 8.48 1.74 8.00 1.16
72 2.70 0.08 8.91 2.03 8.12 0.99 8.56 1.88 9.51 3.95
73 2.73 0.24 9.29 2.52 7.78 1.02 8.14 1.37 9.02 1.57
74 2.72 0.09 8.17 1.58 9.98 1.47 9.47 2.72 10.08 1.93
75 2.86 0.31 8.74 1.90 9.27 2.00 8.51 2.40 8.85 2.28
76 13.57 1.91 15.30 5.20 14.88 2.61 15.27 2.85 14.89 3.23
77 17.92 7.11 15.64 3.33 16.38 3.37 16.05 5.20 14.18 2.01
78 14.70 5.18 14.21 3.53 14.78 2.33 15.63 3.37 15.48 2.22
79 16.20 3.43 16.29 3.62 14.22 2.11 16.41 4.77 14.04 3.65
80 11.85 2.67 15.82 2.71 17.64 4.03 18.93 5.31 16.27 3.65
81 9.47 3.18 13.61 3.92 17.21 3.18 15.45 4.47 17.62 5.74
82 8.51 1.66 15.56 3.50 18.28 3.52 18.68 6.72 16.70 4.89
83 7.01 1.14 13.52 5.14 14.01 2.84 15.42 6.85 14.39 2.65
84 9.88 3.26 15.03 2.36 15.82 3.22 13.17 2.28 17.02 4.17
85 8.64 2.03 13.63 3.88 16.88 3.72 16.91 4.45 15.77 4.12
86 6.55 1.27 13.52 2.74 15.11 6.53 14.66 3.98 16.20 5.17
87 7.40 1.46 11.60 3.82 13.36 2.99 11.36 2.24 13.74 3.91
88 7.71 1.80 13.77 2.63 14.78 5.99 15.86 4.07 13.05 1.84
89 6.26 0.66 11.10 2.51 13.24 2.72 12.68 2.96 12.31 2.98
90 6.84 1.66 14.93 6.66 12.54 3.16 14.14 3.28 11.72 2.11
91 3.90 0.16 9.55 2.48 10.31 2.08 9.44 1.98 9.71 1.82
92 4.02 0.30 8.95 2.40 9.43 1.86 9.04 2.06 9.76 2.55
93 4.21 0.61 8.63 1.13 9.82 2.32 9.33 1.99 9.69 2.12
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(continued...)

Heuristic

Instance MH1 MH2 MH3 MH4 MH5

avg sd avg sd avg sd avg sd avg sd

94 4.01 0.45 11.00 3.62 9.64 3.39 9.55 2.21 9.61 1.62
95 4.29 0.67 8.95 2.03 8.29 0.80 9.86 2.60 11.34 4.06
96 2.92 0.09 6.77 1.38 8.33 1.85 7.18 1.54 7.03 1.11
97 2.89 0.11 7.68 1.22 9.14 2.03 7.32 1.57 8.14 1.28
98 3.01 0.19 6.86 1.09 8.10 1.86 7.25 1.06 8.26 1.49
99 2.94 0.20 6.84 0.88 7.60 1.27 7.52 1.31 7.61 0.68
100 2.92 0.19 6.68 1.46 7.68 1.25 7.68 1.39 9.86 2.91
101 12.03 2.56 17.03 3.64 12.78 1.82 16.11 2.73 14.11 2.22
102 12.79 2.43 17.64 5.75 13.78 2.33 16.04 3.45 14.51 3.93
103 13.78 2.16 16.87 3.71 15.53 1.92 20.47 7.50 16.71 3.77
104 11.97 1.84 16.62 2.96 14.02 2.19 19.03 4.46 12.33 2.43
105 13.63 2.53 19.86 4.20 17.26 3.27 18.10 2.15 16.98 4.66
106 7.69 1.94 12.43 3.13 15.98 4.06 11.38 3.51 13.83 3.47
107 9.70 2.95 14.01 7.27 13.69 2.83 10.85 2.45 14.60 3.97
108 12.19 4.23 14.62 6.50 18.04 6.77 10.86 3.23 15.53 2.26
109 9.61 3.62 12.32 2.29 14.55 3.69 13.24 4.09 14.86 3.92
110 9.92 2.52 11.79 3.45 12.73 4.03 12.44 3.06 16.70 2.90
111 5.20 0.93 11.35 3.21 10.43 2.98 9.84 2.24 12.76 3.28
112 5.42 0.91 10.54 3.36 9.19 1.96 10.77 2.29 10.77 2.10
113 5.47 1.20 8.90 1.77 11.74 2.57 9.60 1.57 9.96 2.84
114 5.58 1.32 8.47 1.98 10.27 3.73 9.93 2.85 10.32 3.32
115 7.46 1.91 13.36 2.22 12.89 3.70 12.21 2.98 14.72 3.92
116 4.98 0.37 10.01 1.91 9.00 1.07 9.59 1.25 9.79 1.29
117 4.80 0.50 7.90 0.62 9.79 1.15 8.50 1.12 8.92 1.14
118 4.74 0.62 8.85 1.88 9.70 1.68 9.01 1.80 10.23 2.69
119 4.75 0.44 9.45 1.50 9.70 1.66 10.11 2.88 9.28 1.38
120 5.02 0.83 10.11 2.87 8.78 1.38 8.93 1.15 9.92 1.80
121 2.78 0.14 6.43 1.35 7.13 1.06 7.25 0.93 7.81 1.74
122 2.75 0.11 5.80 0.81 8.20 2.14 6.28 1.08 7.72 1.95
123 2.87 0.25 6.19 1.08 7.30 1.96 6.66 1.28 8.41 2.60
124 2.93 0.23 6.52 0.96 7.34 2.05 5.79 0.84 6.68 1.35
125 2.91 0.22 6.68 1.16 6.87 1.42 6.98 0.95 7.67 2.64

Average 6.92 1.51 11.25 2.85 11.73 2.70 11.41 2.83 11.85 2.75
Standard Deviation 3.64 1.31 3.20 1.48 2.91 1.26 3.24 1.40 2.76 1.14

D.3 Chapter 6

The following tables complement the material presented on Chapter 6

Table D.7 and Table D.7 detail, for each instance, the average results presented on Ta-

ble 7.11 and Table 7.12, respectively, according to the indexes presented on Table 4.2.
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Table D.7: Dual Bounds for the Maximisation of β. Each row represents the results obtained with each proposed method to obtain
upper bounds for the maximisation of β, in ascending order of optimality gap obtained with the exact approach. The first column
identifies the instance as described on Table 4.2. The second shows the gaps obtained using the exact approach. The next two pairs
show the optimality gaps calculated with Equation 4.6, using the greedy method detailed on Section 6.1.2 and Lagrangian Dual; and
their respective running times.

CPLEX Greedy Lagrangian CPLEX Greedy Lagrangian

Instance gap time gap time gap time Instance gap time gap time gap time

1 0.00 1.78 1.00 0.28 0.00 207.35 7 2.00 3814.76 2.00 0.48 2.00 669.45
2 0.00 2.32 2.00 0.28 2.00 211.56 32 2.00 10710.56 2.00 0.53 2.00 658.64
3 0.00 9.85 6.00 0.29 3.00 309.07 37 2.00 5990.02 2.00 0.45 3.00 313.10
4 0.00 38.35 12.00 0.29 4.00 397.15 62 2.00 6506.55 2.00 0.47 4.00 649.92
5 0.00 11.73 15.00 0.29 4.00 381.24 82 2.00 3616.47 2.00 0.57 3.00 865.19
6 0.00 22.78 1.00 0.31 0.00 182.09 87 2.00 7140.02 2.00 0.46 4.00 221.57
11 0.00 29.01 1.00 0.41 0.00 284.82 107 2.00 4578.11 2.00 0.33 2.00 238.92
16 0.00 23.23 1.00 0.55 1.00 166.58 8 3.00 4849.14 8.00 0.28 3.00 269.50
21 0.00 25.13 1.00 0.59 1.00 485.74 58 3.20 12872.81 9.00 0.53 3.00 1279.18
22 0.00 5.39 0.00 0.65 3.00 417.05 33 3.24 4273.29 9.00 0.39 3.00 1069.24
26 0.00 1.82 1.00 0.29 0.00 203.26 98 4.00 6073.88 4.00 0.74 6.00 1048.13
27 0.00 2.53 2.00 0.29 2.00 202.04 23 4.00 6330.04 4.00 0.59 5.00 353.92
28 0.00 16.13 8.00 0.29 3.00 392.43 59 4.66 15533.25 17.00 0.29 4.00 1112.33
29 0.00 18.41 10.00 0.29 3.00 348.82 83 4.95 12114.71 7.00 0.40 5.00 1161.41
30 0.00 15.35 11.00 0.29 4.00 344.46 108 4.96 9847.98 8.00 0.59 5.00 1730.33
31 0.00 22.51 1.00 0.31 0.00 172.88 60 5.00 16169.38 17.00 0.30 5.00 888.72
36 0.00 30.03 1.00 0.44 1.00 152.13 68 5.00 5013.08 5.00 0.68 6.00 365.54
41 0.00 106.72 1.00 0.57 1.00 162.03 73 5.00 4569.11 5.00 0.67 6.00 1448.09
46 0.00 70.05 1.00 0.63 1.00 162.65 38 5.00 3698.03 6.00 0.45 5.00 337.59
51 0.00 3.35 1.00 0.29 0.00 169.88 13 5.00 5827.61 7.00 0.41 6.00 394.19
52 0.00 11.14 2.00 0.29 2.00 161.69 18 5.00 4717.43 5.00 0.56 6.00 381.33
53 0.00 28.22 8.00 0.29 3.00 298.54 43 5.00 6232.06 5.00 0.58 6.00 361.92
54 0.00 2015.07 14.00 0.29 3.00 310.88 118 5.00 7654.72 5.00 0.64 7.00 312.71
55 0.00 56.34 14.00 0.29 4.00 303.98 49 5.00 5112.37 5.00 0.63 6.00 358.91
56 0.00 43.94 1.00 0.29 0.00 134.44 113 5.37 6504.03 8.00 0.39 5.00 896.15
61 0.00 27.93 1.00 0.49 1.00 474.04 9 5.81 4485.28 12.00 0.31 6.00 290.03
67 0.00 708.18 0.00 0.68 3.00 316.21 63 5.87 6015.72 7.00 0.49 6.00 384.50
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(continued...)

CPLEX Greedy Lagrangian CPLEX Greedy Lagrangian

Instance gap time gap time gap time Instance gap time gap time gap time

76 0.00 7.21 1.00 0.29 0.00 159.04 34 5.90 3928.71 13.00 0.32 6.00 891.99
77 0.00 15.54 2.00 0.29 2.00 149.03 14 5.99 4313.50 9.00 0.41 6.00 451.26
78 0.00 828.07 8.00 0.29 3.00 274.65 19 6.00 8807.05 6.00 0.61 7.00 1811.93
80 0.00 59.76 16.00 0.30 3.00 333.87 99 6.00 10580.99 6.00 0.71 9.00 1476.61
81 0.00 65.47 1.00 0.35 0.00 239.72 15 6.00 4524.88 15.00 0.41 7.00 351.21
91 0.00 3.39 0.00 0.60 0.00 252.05 48 6.00 9079.93 6.00 0.63 8.00 351.07
92 0.00 2.50 0.00 0.60 4.00 328.39 20 6.00 7858.85 10.00 0.99 7.00 1494.19
93 0.00 3.51 0.00 0.61 3.00 464.47 25 6.00 4481.78 10.00 0.59 7.00 445.45
94 0.00 3.32 0.00 0.60 4.00 561.12 109 6.11 30353.52 14.00 0.41 6.00 1817.24
95 0.00 1.85 0.00 0.82 3.00 2171.26 64 6.14 6429.11 11.00 0.49 6.00 412.32
101 0.00 3.14 1.00 0.29 0.00 152.72 10 6.32 4713.51 18.00 0.31 6.00 322.68
102 0.00 15.09 2.00 0.29 2.00 139.13 44 6.42 5503.90 7.00 0.81 7.00 1564.32
103 0.00 28.57 7.00 0.29 3.00 278.68 35 6.43 3989.54 14.00 0.32 6.00 375.22
104 0.00 83.82 13.00 0.29 3.00 368.87 88 6.50 24499.53 8.00 0.46 7.00 263.88
105 0.00 3190.20 14.00 0.30 3.00 349.04 110 6.77 22707.50 15.00 0.34 7.00 880.03
106 0.00 73.65 1.00 0.33 0.00 156.07 85 6.79 35976.86 16.00 0.37 7.00 920.57
111 0.00 23.87 1.00 0.38 0.00 652.13 39 7.00 4040.56 10.00 0.45 7.00 395.33
112 0.00 5.23 0.00 0.39 4.00 1145.06 45 7.00 4326.06 7.00 0.94 8.00 1413.95
114 0.00 4.46 0.00 0.38 4.00 568.82 50 7.00 7720.61 7.00 0.63 9.00 375.11
117 0.00 5.43 0.00 0.64 3.00 384.87 40 7.00 4745.19 10.00 0.45 7.00 444.61
121 0.00 122.89 0.00 0.66 0.00 165.87 84 7.00 16122.19 12.00 0.37 7.00 931.49
122 0.00 3.56 0.00 0.90 3.00 3018.81 125 7.00 4939.96 7.00 0.67 9.00 312.09
123 0.00 867.24 0.00 1.09 3.00 2003.70 24 7.00 4631.05 7.00 0.58 8.00 492.27
124 0.00 2.97 0.00 0.67 3.00 571.02 74 7.33 7016.72 9.00 0.67 8.00 1119.19
66 1.00 5008.28 1.00 0.67 1.00 166.18 65 7.46 4427.36 11.00 0.49 8.00 353.46
71 1.00 3741.13 1.00 0.66 1.00 521.01 90 7.86 15364.48 15.00 0.46 8.00 293.75
86 1.00 5650.63 1.00 0.46 1.00 467.21 69 7.89 23599.10 9.00 0.68 9.00 1524.69
96 1.00 3883.89 1.00 0.97 1.00 656.77 115 7.89 7055.09 13.00 0.47 8.00 258.30
116 1.00 4239.25 1.00 0.64 1.00 143.50 89 7.98 12724.39 11.00 0.46 8.00 279.66
79 1.00 3920.06 12.00 0.29 4.00 400.88 119 8.54 7115.17 9.00 0.64 9.00 283.80
17 1.00 3921.63 1.00 0.56 3.00 341.10 75 8.83 13277.99 9.00 0.68 10.00 1170.26
42 1.00 4360.84 1.00 0.57 3.00 322.30 70 9.00 5565.29 9.00 0.70 10.00 1984.72
47 1.00 4954.73 1.00 0.65 3.00 395.35 100 9.77 14770.70 11.00 0.71 10.00 1395.14
72 1.00 6093.50 1.00 0.67 4.00 1034.99 120 10.00 4080.71 10.00 0.64 11.00 283.36
97 1.00 4972.28 1.00 0.71 4.00 1236.49 Average 2.91 4939.38 5.85 0.49 4.14 594.45
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(continued...)

CPLEX Greedy Lagrangian CPLEX Greedy Lagrangian

Instance gap time gap time gap time Instance gap time gap time gap time

57 1.67 14580.87 2.00 0.50 1.00 1032.05 StdDev 3.10 6308.06 5.15 0.18 2.80 522.91
12 1.94 3805.79 2.00 0.32 2.00 146.03
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Table D.8: Dual Bounds for the maximisation of the Total Covering. Each row represents the results obtained with each proposed
method to obtain upper bounds for the maximisation of β, in ascending order of optimality gap obtained with the exact approach.
The first column identifies the instance as described on Table 4.2. The second shows the gaps obtained using the exact approach. The
next two pairs show the optimality gaps calculated with Equation 4.5, using greedy method detailed on Section 6.1.3 and Lagrangian
Dual, and considering the best primal bound obtained with the exact method before one hour of computation time.

CPLEX Greedy Lagrangian CPLEX Greedy Lagrangian

Instance gap time gap time gap time Instance gap time gap time gap time

1 0.00% 0.85 19.15% 0.29 7.75% 3600.00 21 3.10% 3600.06 6.44% 0.64 5.21% 3600.00
2 0.00% 0.87 19.15% 0.29 7.72% 3600.00 23 3.11% 3600.63 6.44% 2.13 4.42% 3600.00
3 0.00% 0.95 19.31% 0.29 7.60% 3600.00 25 3.11% 3600.08 6.44% 2.38 4.12% 3600.00
4 0.00% 1.03 20.09% 1.64 8.51% 3600.00 46 3.11% 3601.47 6.57% 0.63 5.01% 3600.00
5 0.00% 0.91 19.30% 1.71 7.37% 3600.00 47 3.11% 3600.35 6.71% 2.56 5.19% 3600.00
26 0.00% 0.96 18.25% 0.29 7.30% 3600.00 24 3.12% 3600.07 6.44% 2.03 4.27% 3600.00
27 0.00% 0.94 18.25% 0.29 7.27% 3600.00 111 3.13% 3600.17 3.63% 1.11 3.19% 1636.18
28 0.00% 0.96 20.41% 2.19 8.02% 3600.00 113 3.13% 3600.44 3.63% 1.02 3.19% 1557.91
29 0.00% 0.92 18.75% 2.44 7.27% 3600.00 67 3.14% 3602.48 6.26% 2.41 4.56% 3600.00
30 0.00% 0.93 18.49% 2.42 7.07% 3600.00 41 3.55% 3600.31 8.26% 0.58 6.26% 3600.00
51 0.00% 3.33 17.31% 0.29 6.64% 3600.00 16 3.56% 3600.05 6.96% 0.56 5.29% 3600.00
52 0.00% 5.19 17.31% 0.30 6.61% 3600.00 19 3.56% 3600.24 6.96% 1.50 5.48% 3600.00
53 0.00% 3.27 17.55% 0.30 6.60% 3600.00 42 3.56% 3600.23 8.26% 0.58 6.16% 3600.00
55 0.00% 6.84 17.69% 0.30 6.42% 3600.00 17 3.57% 3600.14 6.96% 1.99 5.22% 3599.99
76 0.00% 4.47 5.28% 0.29 2.88% 3600.00 18 3.57% 3600.50 6.96% 2.18 5.06% 3600.00
77 0.00% 5.59 5.28% 0.30 2.86% 3600.00 20 3.57% 3600.41 6.96% 1.71 5.42% 3600.00
78 0.00% 5.31 5.38% 0.30 2.84% 3600.00 43 3.58% 3600.59 8.26% 2.41 5.92% 3600.00
91 0.00% 2.66 0.00% 0.61 0.00% 3.59 44 3.64% 3600.33 8.11% 0.88 6.50% 3600.00
92 0.00% 2.11 0.00% 2.32 0.00% 3.60 48 3.98% 3600.56 7.08% 0.64 5.38% 3600.00
93 0.00% 2.36 0.00% 2.24 0.00% 3.83 49 3.98% 3602.36 7.08% 2.46 5.03% 3600.00
94 0.00% 2.31 0.00% 2.37 0.00% 3.61 50 3.98% 3605.07 7.08% 2.46 5.07% 3600.00
95 0.00% 1.13 0.00% 1.62 0.00% 7.37 66 4.14% 3600.38 7.22% 0.67 5.51% 3600.00
105 0.00% 10.61 2.26% 1.56 0.99% 2439.25 69 4.15% 3601.16 7.22% 1.16 5.69% 3600.00
112 0.00% 2.33 0.00% 0.96 0.00% 6.37 70 4.15% 3602.75 7.22% 0.79 5.70% 3600.00
114 0.00% 4.26 0.00% 2.30 0.00% 3.33 68 4.16% 3605.92 7.22% 2.07 5.24% 3600.00
117 0.00% 2.36 0.00% 2.00 0.00% 3.59 45 4.21% 3607.24 8.56% 0.68 6.90% 3600.00
122 0.00% 2.22 0.00% 1.69 0.00% 11.04 72 4.80% 3600.21 6.67% 1.34 5.88% 3600.00
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(continued...)

CPLEX Greedy Lagrangian CPLEX Greedy Lagrangian

Instance gap time gap time gap time Instance gap time gap time gap time

124 0.00% 2.14 0.00% 2.32 0.00% 3.59 74 4.80% 3600.56 6.67% 1.44 5.51% 3600.00
54 0.01% 18.36 18.39% 0.30 6.93% 3600.00 86 4.80% 3600.05 5.89% 0.50 4.99% 3600.00
56 0.01% 1797.54 3.32% 0.29 1.65% 3600.00 87 4.80% 3600.38 5.89% 0.47 4.94% 2073.22
79 0.01% 7.57 5.35% 1.84 2.74% 3600.00 88 4.80% 3604.94 5.89% 0.47 4.93% 1946.92
80 0.01% 7.87 5.34% 2.04 2.68% 3600.00 89 4.80% 3611.02 5.89% 0.47 4.91% 1791.77
101 0.01% 3.96 2.27% 0.29 1.06% 2410.70 90 4.80% 3656.86 5.89% 0.47 4.91% 1671.48
102 0.01% 7.01 2.27% 0.30 1.05% 2404.61 71 5.12% 3600.02 7.22% 0.71 6.35% 3600.00
103 0.01% 7.58 2.18% 0.30 0.97% 2463.67 73 5.13% 3600.35 7.22% 1.15 6.09% 3600.00
104 0.01% 8.86 2.27% 2.08 0.95% 2719.92 75 5.13% 3600.15 7.22% 1.78 5.86% 3600.00
6 0.02% 3600.24 5.18% 0.31 3.40% 3600.00 61 5.35% 3600.53 10.55% 0.54 8.11% 3600.00

125 0.02% 3600.44 0.18% 0.67 0.12% 655.13 36 5.78% 3600.07 12.00% 0.45 8.33% 3600.00
121 0.04% 3600.19 0.46% 0.66 0.36% 1090.00 37 5.78% 3600.62 12.00% 0.45 8.27% 3600.00
33 0.08% 3600.26 2.97% 1.09 2.29% 3600.00 81 5.78% 3601.55 7.80% 0.36 6.09% 3253.96
57 0.24% 3600.06 4.00% 1.10 2.80% 3600.00 82 5.78% 3601.27 7.80% 0.58 6.48% 3600.00
59 0.24% 3600.32 4.00% 0.75 2.56% 3600.00 85 5.78% 3613.83 7.80% 1.00 6.25% 3600.00
60 0.24% 3600.90 4.00% 1.33 2.55% 3600.00 38 5.79% 3601.36 12.00% 0.45 7.96% 3600.00
58 0.25% 3600.34 4.00% 0.63 2.81% 3600.00 39 5.79% 3600.12 12.00% 2.01 7.71% 3600.00
8 0.31% 3600.34 3.79% 0.29 2.19% 3600.00 40 5.79% 3600.37 12.00% 1.95 7.61% 3600.00
7 0.45% 3600.04 6.46% 0.81 5.20% 3600.00 84 5.79% 3617.75 7.80% 1.03 6.27% 3600.00
12 0.59% 3600.42 3.72% 0.33 1.88% 3600.00 63 5.85% 3602.58 10.79% 2.22 7.21% 3600.00
123 1.14% 3600.75 1.36% 1.08 1.18% 3357.90 65 5.85% 3600.24 10.79% 0.50 6.91% 3600.00
119 1.60% 3602.58 2.21% 0.65 1.65% 1164.14 64 6.39% 3602.39 11.24% 1.90 7.37% 3600.00
116 1.61% 3603.45 2.21% 0.64 1.67% 1693.37 11 7.23% 3600.32 14.24% 0.42 9.49% 3600.00
118 1.61% 3602.41 2.21% 0.66 1.66% 1398.99 13 7.24% 3600.08 14.24% 2.25 9.18% 3600.00
120 1.61% 3607.88 2.21% 0.65 1.65% 1161.59 14 7.24% 3600.33 14.24% 2.29 8.81% 3600.00
115 2.12% 3604.25 2.84% 0.47 2.19% 1142.39 15 7.24% 3600.84 14.24% 1.98 8.80% 3600.00
22 2.62% 3600.14 5.69% 2.03 4.44% 3600.00 62 8.08% 3603.56 12.16% 1.32 9.81% 3600.00
110 3.01% 3601.12 3.89% 1.30 3.12% 3026.12 83 8.09% 3600.14 9.99% 1.30 8.49% 3599.99
96 3.06% 3601.67 3.69% 1.77 3.24% 3600.00 9 9.81% 3602.18 16.36% 0.32 11.92% 3600.00
97 3.06% 3601.22 3.69% 1.19 3.20% 3600.00 10 9.84% 3600.59 16.36% 1.96 11.91% 3600.00
98 3.06% 3601.85 3.69% 1.18 3.15% 3600.00 31 11.89% 3600.05 17.93% 0.32 13.30% 3600.00
99 3.06% 3600.13 3.69% 2.13 3.12% 3600.00 32 11.89% 3601.54 17.93% 1.16 15.05% 3600.00
100 3.06% 3600.51 3.69% 1.20 3.12% 3600.00 34 11.91% 3600.31 17.93% 0.95 14.26% 3600.00
106 3.09% 3601.04 3.99% 0.33 3.23% 1222.16 35 11.92% 3600.03 17.93% 1.86 12.99% 3600.00
107 3.09% 3600.98 3.99% 0.33 3.23% 1200.76 avg 3.00% 2580.31 7.82% 1.15 4.96% 2997.86
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(continued...)

CPLEX Greedy Lagrangian CPLEX Greedy Lagrangian

Instance gap time gap time gap time Instance gap time gap time gap time

108 3.09% 3603.08 3.99% 1.00 3.30% 3600.00 stdev 2.99% 1621.13 5.76% 0.75 3.19% 1148.44
109 3.09% 3604.13 3.99% 1.37 3.29% 3600.00
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